
### **General Description**

The WTD601 is a general RF gain boosting amplifier MMIC that have high linearity & gain performance. The device features flat high gain with excellent in/out return loss. The amplifier typically provides 16dB gain, 37.5dBm OIP3 and 4.8dB Noise Figure while drawing 88mA current at 1.9GHz. The device is packaged in a lead-free/green/RoHS-compliant industry-standard SOT-89 package.

The WTD601 is designed a Darlingtonpair amplifier using high reliability InGap/GaAs HBT process.

### **Functional Block Diagram**





#### **Features**

- 5~6000MHz
- P1dB = 24.10dBm @1900MHz
- Gain = 16.0 dB @ 1900MHz
- OIP3 = 37.5 dBm @1900 MHz
- NF = 4.8 dB @ 1900 MHz
- IRL= 19.0dB and ORL=14.9dB
- 50 Ohm Cascadable Drive amplifier
- Unconditionally Stable
- +5V Single Supply, 88mA Current
- Industry Standard SOT-89 Package

## **Applications**

- Cellular / PCS / 3G / LTE repeaters
- Wireless Data / WLAN
- CATV & Cable Modem
- ISM
- Microwave Radio



## **Absolute Maximum Ratings**

| Parameter                                | Rating        |
|------------------------------------------|---------------|
| Supply Voltage(V <sub>CC</sub> )         | 5.5 V         |
|                                          | 100 mA        |
| Max RF Input Power                       | 20 dBm        |
| Operating Temperature( $T_L$ )           | -40 to +85°C  |
| Storage Temperature                      | -65 to +150°C |
| ESD Sensitivity (Human Body Model : HBM) | Class 1C      |
| Moisture Sensitivity Level (MSL)         | MSL1          |

#### Note.

- 1. Stress under Absolute Maximum Ratings may result in permanent damage to the device.
- 2. Extended application of Absolute Maximum ratings condition to the device may reduce device reliability.
- 3. These rating are not intended for continuous normal operation.
  - ✓ HBM : Class 1C in accordance with JEDEC Standard JESD22-A114B
  - ✓ MSL: MSL1 in accordance with JEDEC Standard J-STD-020

#### **ESD CAUTION**



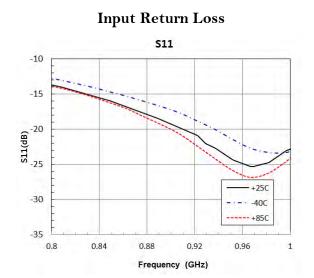
ESD (electrostatic discharge ) sensitive device.

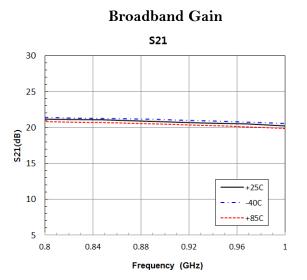
Although this product features proprietary protection circuitry, damage may occur on devices subjected to high energy ESD.



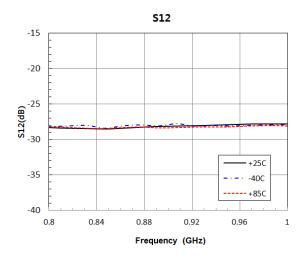
### **Typical Performance at Key Operating Frequencies**

Vcc = +5V,  $T_A = 25$ °C, unless otherwise noted. ( $I_D = 88mA$ )

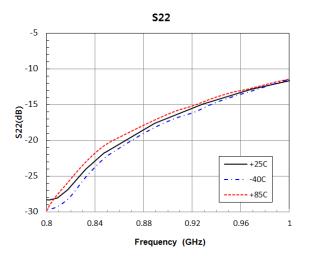

| Parameter | 900MHz | 1900MHz | 2140MHz | 2600MHz | Unit |
|-----------|--------|---------|---------|---------|------|
| S21       | 20.7   | 16.0    | 15.0    | 13.3    | dB   |
| OIP3      | 37.0   | 37.5    | 38.0    | 37.0    | dBm  |
| P1dB      | 24.0   | 24.1    | 23.9    | 23.8    | dBm  |
| S11       | -20.0  | -19.0   | -20.3   | -20.7   | dB   |
| S22       | -16.0  | -14.9   | -18.0   | -28.5   | dB   |
| S12       | -28.0  | -24.3   | -23.5   | -22.2   | dB   |
| NF        | 4.5    | 4.84    | 4.82    | 4.95    | dB   |


#### Note.

- 1. Typical RF performance measured on a Wavetrack evaluation board.
- 2. RF performance data taken with application circuit element values.
- 3. OIP3 measured with two tones at an output 8dBm per tone separated 1MHz.
- 4.  $Z_S = Z_L = 50 \text{ ohm}$ .

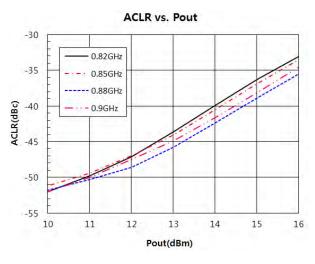


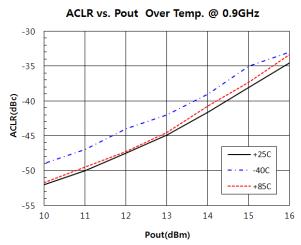

### S-Parameter (@900MHz)

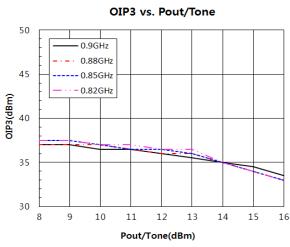


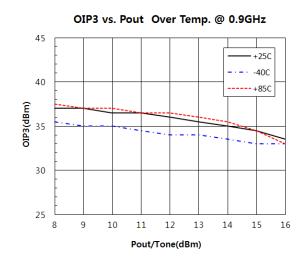



#### Reverse isolation

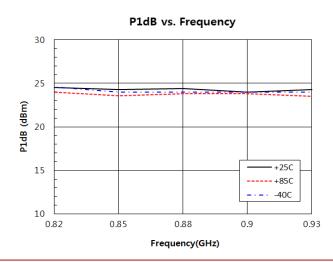




#### **Output Return Loss**



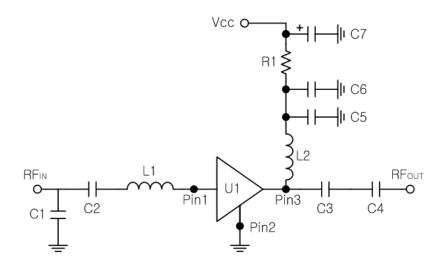




### ACLR & OIP3 vs Pout (@900MHz)








# P1-dB (@900MHz)

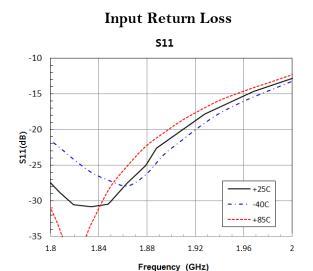


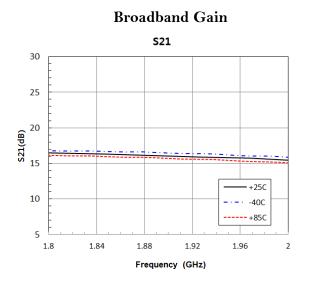


### Application Circuit Schematic (@900MHz)

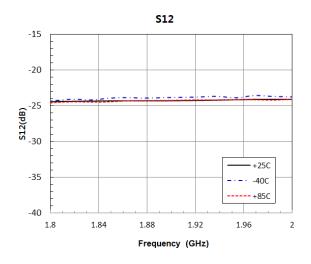


#### Note.

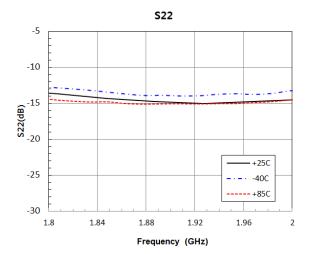

- 1. Application circuit schematic shows the basic connection for operating WTD601.
- 2. A 5V dc bias is supplied to the amplifier through the bias inductor(L1) connected to RF out (Pin3).
- 3. However, for optimum performance at customer board, the value of L1 may vary with board design.
- 4. To get RF performance at under 100MHz, the bias inductor (L1) must be optimized.


## Application Circuit Element Values (@900MHz)

| Reference | Value  | Unit | Description                 | Manufacture |
|-----------|--------|------|-----------------------------|-------------|
| U1        | WTD601 | -    | RF Drive Amplifier          | WAVETRACK   |
| C1        | 6      | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C2        | 30     | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| С3        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C4        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C5        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C6        | 1000   | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| С7        | 0.1    | [uF] | Tantalum Capacitor          | Samsung     |
| L1        | 39     | [nH] | Inductor. 0402, 5%, Ceramic | Samsung     |
| R1        | 0      | [Ω]  | Resistor Chip               | Samsung     |

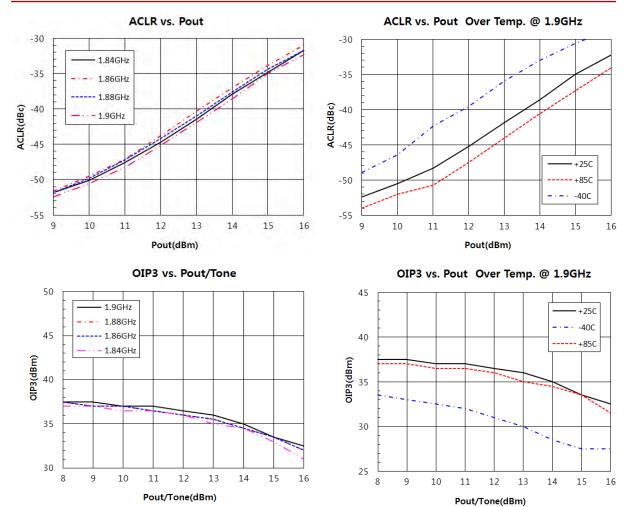



### S-Parameter (@1900MHz)

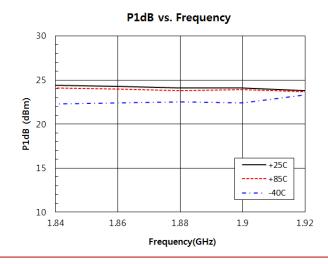





#### Reverse isolation

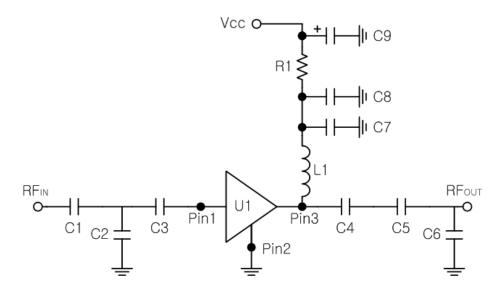



### **Output Return Loss**






## ACLR & OIP3 vs Pout (@1900MHz)




## P1-dB (@1900MHz)

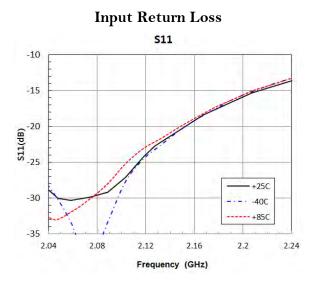


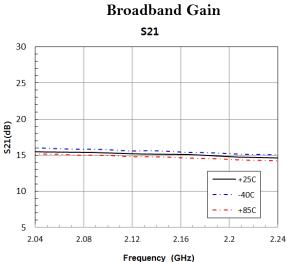


## Application Circuit Schematic (@1900MHz)

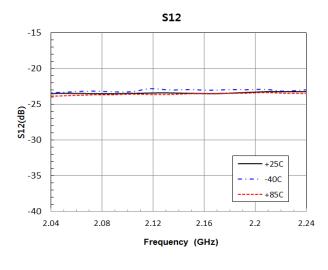


#### Note.

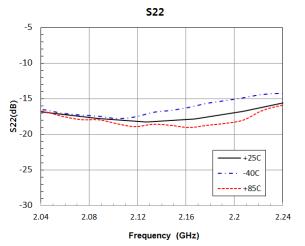

- 1. Application circuit schematic shows the basic connection for operating WTD601.
- 2. A 5V dc bias is supplied to the amplifier through the bias inductor(L1) connected to RF out (Pin3).
- 3. However, for optimum performance at customer board, the value of L1 may vary with board design.
- 4. To get RF performance at under 100MHz, the bias inductor (L1) must be optimized.


## Application Circuit Element Values (@1900MHz)

| Reference | Value  | Unit | Description                 | Manufacture |
|-----------|--------|------|-----------------------------|-------------|
| U1        | WTD601 | -    | RF Gain Block Amplifier     | WAVETRACK   |
| C1        | 20     | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C2        | 2      | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| С3        | 20     | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C4        | 20     | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C5        | 20     | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C6        | 1      | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C7        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C8        | 1000   | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| С9        | 0.1    | [uF] | Tantalum Capacitor          | Samsung     |
| L1        | 22     | [nH] | Inductor. 0402, 5%, Ceramic | Samsung     |
| R1        | О      | [Ω]  | Resistor Chip               | Samsung     |

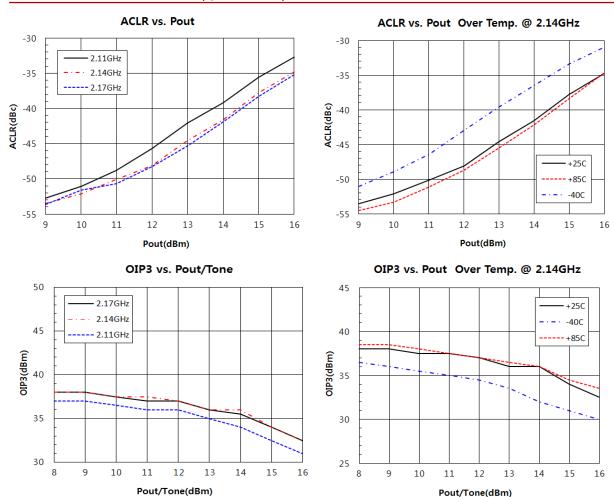



## S-Parameter (@2140MHz)

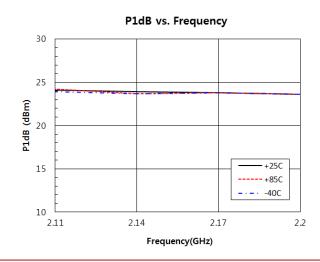





#### Reverse isolation

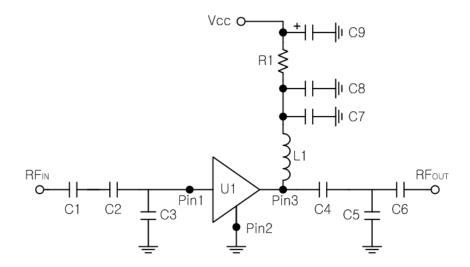



### **Output Return Loss**






### ACLR & OIP3 vs Pout (@2140MHz)




# P1-dB (@2140MHz)

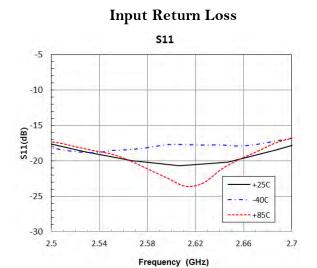


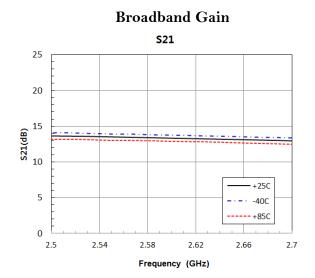


# Application Circuit Schematic (@2140MHz)

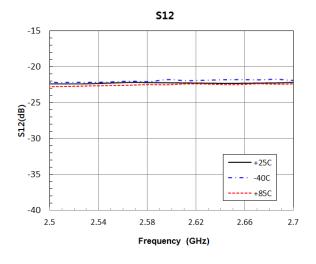


#### Note.

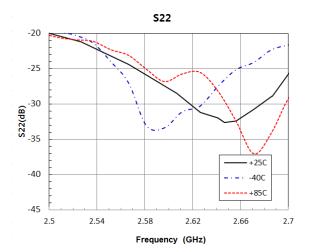

- 1. Application circuit schematic shows the basic connection for operating WTD601.
- 2. A 5V dc bias is supplied to the amplifier through the bias inductor(L1) connected to RF out (Pin3).
- 3. However, for optimum performance at customer board, the value of L1 may vary with board design.
- 4. To get RF performance at under 100MHz, the bias inductor (L1) must be optimized.


## Application Circuit Element Values (@2140MHz)

| Reference | Value  | Unit | Description                 | Manufacture |
|-----------|--------|------|-----------------------------|-------------|
| U1        | WTD601 | -    | RF Drive Amplifier          | WAVETRACK   |
| C1        | 20     | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C2        | 20     | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| С3        | 1.5    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C4        | 20     | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C5        | 1.5    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C6        | 20     | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C7        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C8        | 1000   | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| С9        | 0.1    | [uF] | Tantalum Capacitor          | Samsung     |
| L1        | 22     | [nH] | Inductor. 0402, 5%, Ceramic | Samsung     |
| R1        | 0      | [Ω]  | Resistor Chip               | Samsung     |

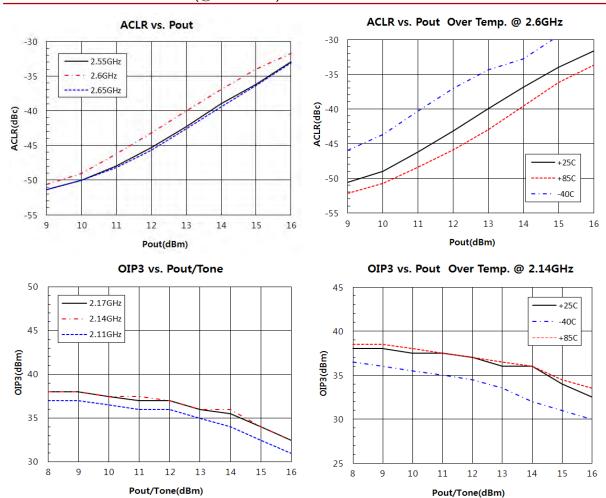



### S-Parameter (@2600MHz)

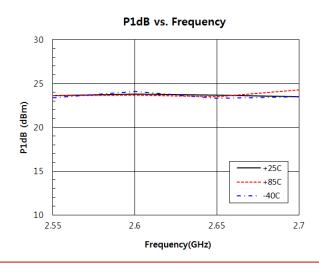





#### Reverse isolation

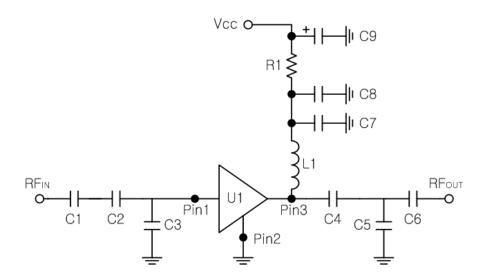



### **Output Return Loss**






### ACLR & OIP3 vs Pout (@2600MHz)




## P1-dB (@2600MHz)

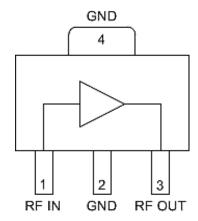




## Application Circuit Schematic (@2600MHz)



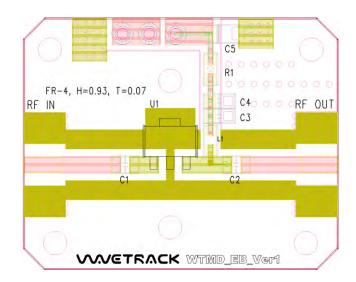
#### Note.


- 1. Application circuit schematic shows the basic connection for operating WTD601.
- 2. A 5V dc bias is supplied to the amplifier through the bias inductor(L1) connected to RF out (Pin3).
- 3. However, for optimum performance at customer board, the value of L1 may vary with board design.
- 4. To get RF performance at under 100MHz, the bias inductor (L1) must be optimized.

## Application Circuit Element Values (@2600MHz)

| Reference | Value  | Unit | Description                 | Manufacture |
|-----------|--------|------|-----------------------------|-------------|
| U1        | WTD601 | -    | RF Drive Amplifier          | WAVETRACK   |
| C1        | 20     | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C2        | 20     | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| С3        | 1.0    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C4        | 20     | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C5        | 1.0    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C6        | 20     | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C7        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C8        | 1000   | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| С9        | 0.1    | [uF] | Tantalum Capacitor          | Samsung     |
| L1        | 22     | [nH] | Inductor. 0402, 5%, Ceramic | Samsung     |
| R1        | 0      | [Ω]  | Resistor Chip               | Samsung     |



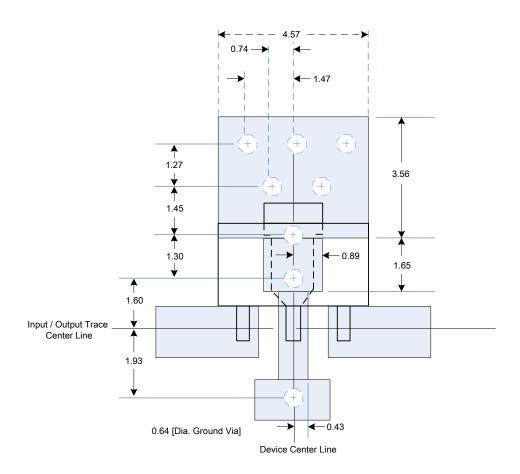

## Pin Configuration and Function Descriptions



| Pin Number | Function | Description                                                                                                                  |
|------------|----------|------------------------------------------------------------------------------------------------------------------------------|
| 1          | RF IN    | RF input pin. This pin requires the use of an external DC blocking capacitor.                                                |
| 2          | GND      | Connection to ground. Use via holes as close to the device ground leads as possible to reduce ground path inductance.        |
| 3          | RF OUT   | RF output pin. DC voltage is present on this pin. DC blocking capacitor is necessary. An RF choke is needed to feed DC bias. |



## **Application Circuit Layout**




#### Note.

- 1. Package bottom must be connected to RF/DC ground.
- 2. Provide a large ground pad area under device ground pin.
- 3. A sufficient number of via holes should be used to connect the top and bottom ground plane.
- 4. The circuit board used in the application should apply RF circuit design techniques.
- 5. RF lines should have 50 ohm impedance.
  - ✓ Circuit board material : FR-4
  - ✓ Circuit board height: 0.93mm:



### **Recommended PCB Land Pattern**

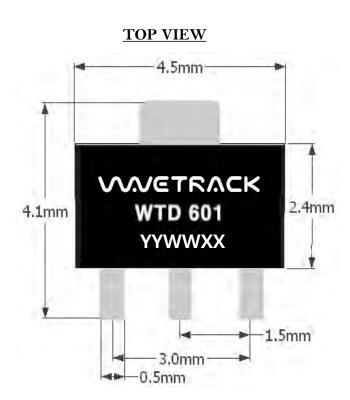


#### Note.

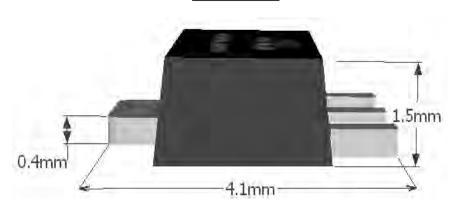
- 1. All dimensions are in millimeters.
- 2. Dimensions are inclusive of plating
- 3. Solder the copper pad on the backside of the device package to the ground plane.
- 4. Provide a large ground pad area under device pins 1,2,3 with many plated via holes as shown.
- 5. Dimensions not given for 50ohm line.
- 6. Scale accordingly for different board thickness and dielectric contacts.
- 7. We recommend 1 or 2ounce copper.



### **Package Information & Outline Drawing**


• Marking: Manufacture

Part Number - WTMXXX


Lot code - YYWWXX

YY = Year / WW = Working Week / XX = Wafer No.

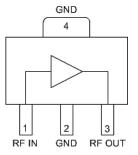
• Outline Drawing : Millimeters



#### **SIDE VIEW**






### **General Description**

The WTM102 is a general RF gain boosting amplifier MMIC that have high linearity & gain performance. The device features flat high gain with excellent in/out return loss. The amplifier typically provides 21.5dB gain, 32dBm OIP3 and 3.2dB Noise Figure while drawing 77mA current at 1.9GHz. The device is packaged in a lead-free/green/RoHS-compliant industry-standard SOT-89 package.

The WTM102 is designed a Darlingtonpair amplifier using high reliability InGap/GaAs HBT process.

#### **Functional Block Diagram**





#### **Features**

- 5~6000MHz
- P1dB = 19.3 dBm @ 1900MHz
- Gain = 21.5 dB @1900MHz
- OIP3 = 32 dBm @1900 MHz
- NF = 3.2 dB @ 1900 MHz
- IRL= 12dB and ORL = 13dB
- 50 Ohm Cascadable Gain Block
- Unconditionally Stable
- +5V Single Supply, 77mA Current
- Industry Standard SOT-89 Package

## **Applications**

- Cellular / PCS / 3G / LTE repeaters
- Wireless Data / WLAN
- CATV & Cable Modem
- ISM
- Microwave Radio



## **Absolute Maximum Ratings**

| Parameter                                | Rating        |
|------------------------------------------|---------------|
| Supply Voltage(V <sub>CC</sub> )         | 5.5 V         |
|                                          | 100 mA        |
| Max RF Input Power                       | 20 dBm        |
| Operating Temperature( $T_L$ )           | -40 to +85°C  |
| Storage Temperature                      | -65 to +150°C |
| ESD Sensitivity (Human Body Model : HBM) | Class 1C      |
| Moisture Sensitivity Level (MSL)         | MSL1          |

#### Note.

- 1. Stress under Absolute Maximum Ratings may result in permanent damage to the device.
- 2. Extended application of Absolute Maximum ratings condition to the device may reduce device reliability.
- 3. These rating are not intended for continuous normal operation.
  - ✓ HBM : Class 1C in accordance with JEDEC Standard JESD22-A114B
  - ✓ MSL: MSL1 in accordance with JEDEC Standard J-STD-020

#### **ESD CAUTION**



ESD (electrostatic discharge ) sensitive device.

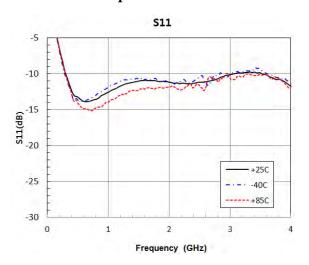
Although this product features proprietary protection circuitry, damage may occur on devices subjected to high energy ESD.



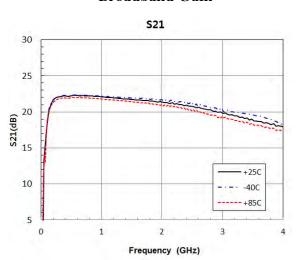
### **Typical Performance at Key Operating Frequencies**

Vcc = +5V,  $T_A=25$ °C, unless otherwise noted. ( $I_D = 77mA$ )

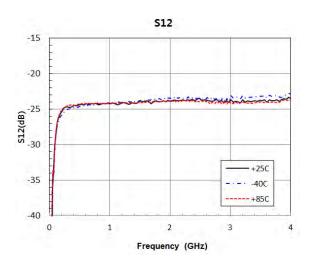
| Parameter | 900MHz | 1900MHz | 2140MHz | 2650MHz | Unit |
|-----------|--------|---------|---------|---------|------|
| S21       | 22.0   | 21.5    | 21.1    | 20.7    | dB   |
| OIP3      | 34.5   | 32      | 30.0    | 30.0    | dBm  |
| P1dB      | 20.5   | 19.3    | 19.0    | 17.4    | dBm  |
| S11       | -13.0  | -12.0   | -11.3   | -11.0   | dB   |
| S22       | -13.2  | -13.0   | -14.1   | -11.4   | dB   |
| S12       | -23.2  | -23.5   | -23.3   | -23.1   | dB   |
| NF        | 3.0    | 3.2     | 3.3     | 3.3     | dB   |


#### Note.

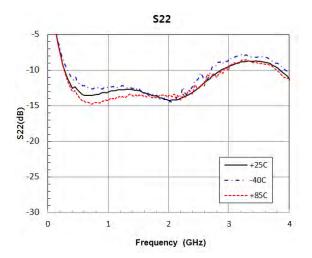
- 1. Typical RF performance measured on a Wavetrack evaluation board.
- 2. RF performance data taken with application circuit element values.
- 3. OIP3 measured with two tones at an output 5dBm per tone separated 1MHz.
- 4.  $Z_S = Z_L = 50 \text{ ohm}$ .




#### **S-Parameter**

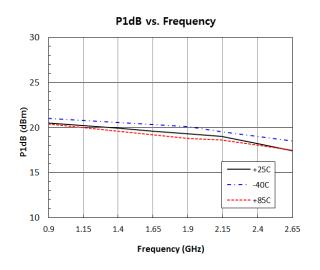

#### Input Return Loss

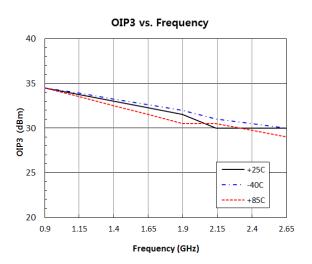



#### **Broadband Gain**



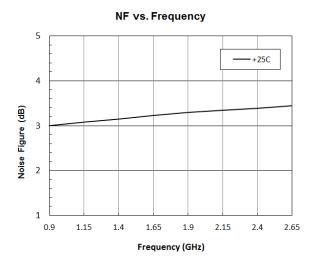
#### Reverse isolation





### **Output Return Loss**

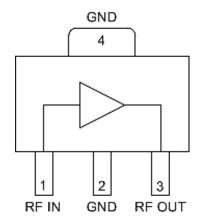





#### P1-dB & OIP3



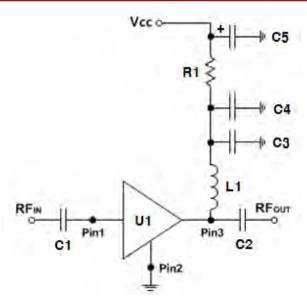



Note. +5dBm / Tone Output Power

# **Noise Figure**






# Pin Configuration and Function Descriptions



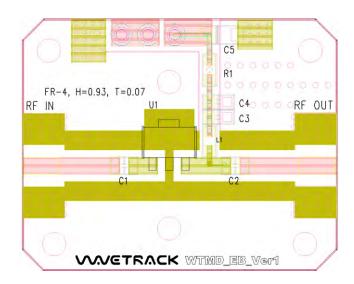
| Pin Number | Function | Description                                                                                                                  |
|------------|----------|------------------------------------------------------------------------------------------------------------------------------|
| 1          | RF IN    | RF input pin. This pin requires the use of an external DC blocking capacitor.                                                |
| 2          | GND      | Connection to ground. Use via holes as close to the device ground leads as possible to reduce ground path inductance.        |
| 3          | RF OUT   | RF output pin. DC voltage is present on this pin. DC blocking capacitor is necessary. An RF choke is needed to feed DC bias. |



# **Application Circuit Schematic**



#### Note.

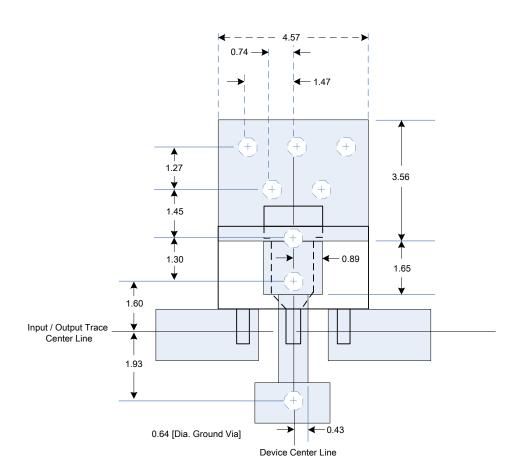

- 1. Application circuit schematic shows the basic connection for operating WTM102.
- 2. A 5V dc bias is supplied to the amplifier through the bias inductor(L1) connected to RF out (Pin3).
- 3. However, for optimum performance at customer board, the value of L1 may vary with board design.
- 4. To get RF performance at under 100MHz, the bias inductor (L1) must be optimized.

# **Application Circuit Element Values**

| Reference | Value  | Unit | Description                 | Manufacture |
|-----------|--------|------|-----------------------------|-------------|
| U1        | WTM102 | -    | RF Gain Block Amplifier     | WAVETRACK   |
| C1        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C2        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| С3        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C4        | 10     | [nF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C5        | 10     | [uF] | Tantalum Capacitor          | Samsung     |
| L1        | 39     | [nH] | Inductor. 0402, 5%, Ceramic | Samsung     |
| R1        | О      | [Ω]  | Resistor Chip               | Samsung     |



# **Application Circuit Layout**




#### Note.

- 1. Package bottom must be connected to RF/DC ground.
- 2. Provide a large ground pad area under device ground pin.
- 3. A sufficient number of via holes should be used to connect the top and bottom ground plane.
- 4. The circuit board used in the application should apply RF circuit design techniques.
- 5. RF lines should have 50 ohm impedance.
  - ✓ Circuit board material : FR-4
  - ✓ Circuit board height: 0.93mm:



### **Recommended PCB Land Pattern**

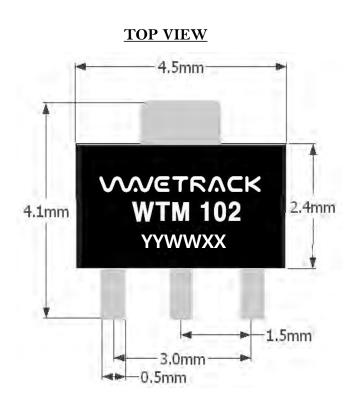


#### Note.

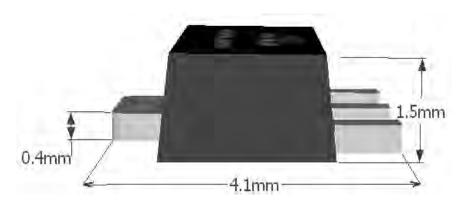
- 1. All dimensions are in millimeters.
- 2. Dimensions are inclusive of plating
- 3. Solder the copper pad on the backside of the device package to the ground plane.
- 4. Provide a large ground pad area under device pins 1,2,3 with many plated via holes as shown.
- 5. Dimensions not given for 50ohm line.
- 6. Scale accordingly for different board thickness and dielectric contacts.
- 7. We recommend 1 or 2ounce copper.



## **Package Information & Outline Drawing**


• Marking: Manufacture

Part Number - WTMXXX


Lot code - YYWWXX

YY = Year / WW = Working Week / XX = Wafer No.

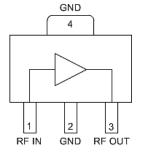
• Outline Drawing : Millimeters



#### **SIDE VIEW**






### **General Description**

The WTM105 is a general RF gain boosting amplifier MMIC that have high linearity & gain performance. The device features flat high gain with excellent in/out return loss. The amplifier typically provides 19.9dB gain, 33.5dBm OIP3 and 3.4dB Noise Figure while drawing 85mA current at 1.9GHz. The device is packaged in a lead-free/green/RoHS-compliant industry-standard SOT-89 package.

The WTM105 is designed a Darlingtonpair amplifier using high reliability InGap/GaAs HBT process.

#### **Functional Block Diagram**





#### **Features**

- 5~6000MHz
- P1dB = 19.7 dBm @ 1900MHz
- Gain = 19.9 dB @ 1900MHz
- NF = 3.4 dB @ 1900 MHz
- IRL= 11 dB and ORL=15 dB
- 50 Ohm Cascadable Gain Block
- Unconditionally Stable
- +5V Single Supply, 85 mA Current
- Industry Standard SOT-89 Package

## **Applications**

- Cellular / PCS / 3G / LTE repeaters
- Wireless Data / WLAN
- CATV & Cable Modem
- ISM
- Microwave Radio



## **Absolute Maximum Ratings**

| Parameter                                | Rating        |
|------------------------------------------|---------------|
| Supply Voltage(V <sub>CC</sub> )         | 5.5 V         |
|                                          | 100 mA        |
| Max RF Input Power                       | 20 dBm        |
| Operating Temperature( $T_L$ )           | -40 to +85°C  |
| Storage Temperature                      | -65 to +150°C |
| ESD Sensitivity (Human Body Model : HBM) | Class 1C      |
| Moisture Sensitivity Level (MSL)         | MSL1          |

#### Note.

- 1. Stress under Absolute Maximum Ratings may result in permanent damage to the device.
- 2. Extended application of Absolute Maximum ratings condition to the device may reduce device reliability.
- 3. These rating are not intended for continuous normal operation.
  - ✓ HBM : Class 1C in accordance with JEDEC Standard JESD22-A114B
  - ✓ MSL: MSL1 in accordance with JEDEC Standard J-STD-020

#### **ESD CAUTION**



ESD (electrostatic discharge ) sensitive device.

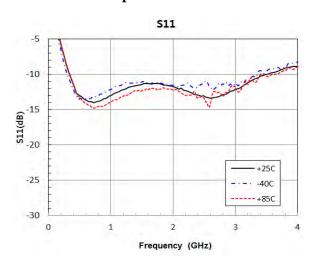
Although this product features proprietary protection circuitry, damage may occur on devices subjected to high energy ESD.



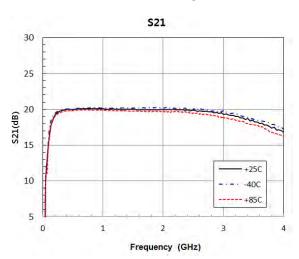
### **Typical Performance at Key Operating Frequencies**

Vcc = +5V,  $T_A = 25$ °C, unless otherwise noted. ( $I_D = 85$ mA)

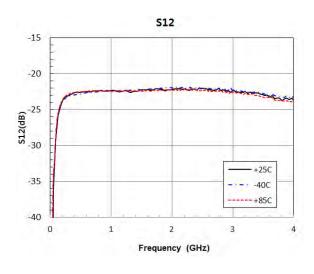
| Parameter | 900MHz | 1900MHz | 2140MHz | 2650MHz | Unit |
|-----------|--------|---------|---------|---------|------|
| S21       | 20.0   | 19.9    | 19.8    | 19.7    | dB   |
| OIP3      | 39.5   | 33.5    | 32.5    | 31.0    | dBm  |
| P1dB      | 20.9   | 19.7    | 19.2    | 17.8    | dBm  |
| S11       | -13.4  | -11.5   | -12.1   | -13.3   | dB   |
| S22       | -13.5  | -15.2   | -16.1   | -13.2   | dB   |
| S12       | -22.2  | -22.5   | -22.3   | -22.1   | dB   |
| NF        | 3.2    | 3.4     | 3.5     | 3.5     | dB   |


#### Note.

- 1. Typical RF performance measured on a Wavetrack evaluation board.
- 2. RF performance data taken with application circuit element values.
- 3. OIP3 measured with two tones at an output 5dBm per tone separated 1MHz.
- 4.  $Z_S = Z_L = 50 \text{ ohm}$ .




#### **S-Parameter**

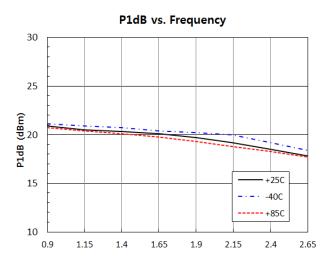

#### **Input Return Loss**

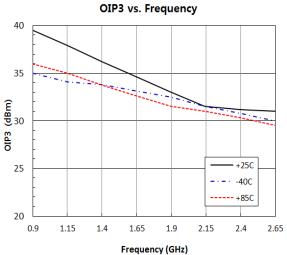


#### **Broadband Gain**



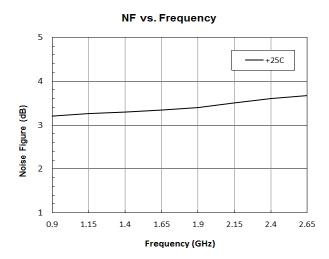
#### Reverse isolation





### **Output Return Loss**

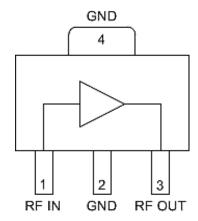





#### P1-dB & OIP3






Note. +5dBm / Tone Output Power

# **Noise Figure**





## Pin Configuration and Function Descriptions



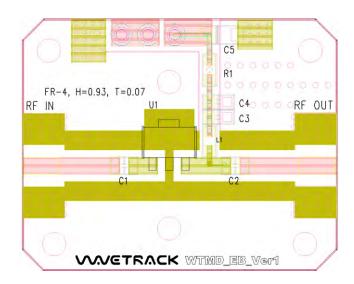
| Pin Number | Function | Description                                                                                                                  |  |
|------------|----------|------------------------------------------------------------------------------------------------------------------------------|--|
| 1          | RF IN    | RF input pin. This pin requires the use of an external DC blocking capacitor.                                                |  |
| 2          | GND      | Connection to ground. Use via holes as close to the device ground leads as possible to reduce ground path inductance.        |  |
| 3          | RF OUT   | RF output pin. DC voltage is present on this pin. DC blocking capacitor is necessary. An RF choke is needed to feed DC bias. |  |



### **Application Circuit Schematic**



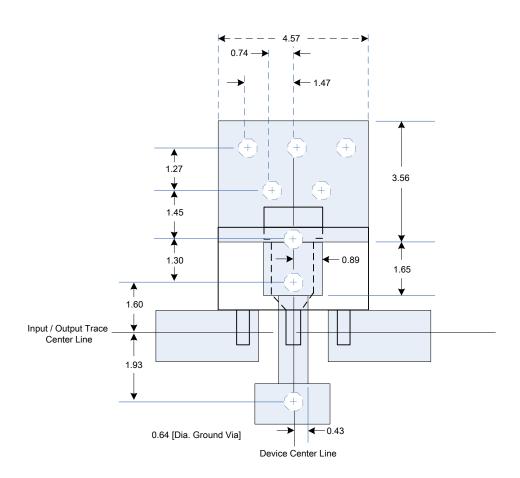
#### Note.


- 1. Application circuit schematic shows the basic connection for operating WTM105.
- 2. A 5V dc bias is supplied to the amplifier through the bias inductor(L1) connected to RF out (Pin3).
- 3. However, for optimum performance at customer board, the value of L1 may vary with board design.
- 4. To get RF performance at under 100MHz, the bias inductor (L1) must be optimized.

# **Application Circuit Element Values**

| Reference | Value  | Unit | Description                 | Manufacture |
|-----------|--------|------|-----------------------------|-------------|
| U1        | WTM105 | -    | RF Gain Block Amplifier     | WAVETRACK   |
| C1        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C2        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| С3        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C4        | 10     | [nF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C5        | 10     | [uF] | Tantalum Capacitor          | Samsung     |
| L1        | 39     | [nH] | Inductor. 0402, 5%, Ceramic | Samsung     |
| R1        | 0      | [Ω]  | Resistor Chip               | Samsung     |




# **Application Circuit Layout**



- 1. Package bottom must be connected to RF/DC ground.
- 2. Provide a large ground pad area under device ground pin.
- 3. A sufficient number of via holes should be used to connect the top and bottom ground plane.
- 4. The circuit board used in the application should apply RF circuit design techniques.
- 5. RF lines should have 50 ohm impedance.
  - ✓ Circuit board material : FR-4
  - ✓ Circuit board height: 0.93mm:



#### **Recommended PCB Land Pattern**



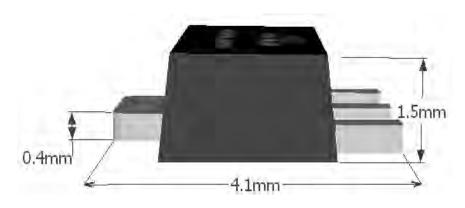
- 1. All dimensions are in millimeters.
- 2. Dimensions are inclusive of plating
- 3. Solder the copper pad on the backside of the device package to the ground plane.
- 4. Provide a large ground pad area under device pins 1,2,3 with many plated via holes as shown.
- 5. Dimensions not given for 50ohm line.
- 6. Scale accordingly for different board thickness and dielectric contacts.
- 7. We recommend 1 or 2ounce copper.



#### **Package Information & Outline Drawing**

• Marking: Manufacture

Part Number - WTMXXX


Lot code - YYWWXX

YY = Year / WW = Working Week / XX = Wafer No.

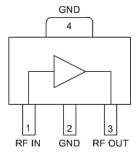
• Outline Drawing : Millimeters

# 4.5mm 4.5mm WWASTRACK WTM 105 YYWWXX 1.5mm 3.0mm 3.0mm

#### **SIDE VIEW**






#### **General Description**

The WTM106 is a general RF gain boosting amplifier MMIC that have high linearity & gain performance. The device features flat high gain with excellent in/out return loss. The amplifier typically provides 18.6dB gain, 30.5dBm OIP3 and 3.4dB Noise Figure while drawing 55mA current at 1.9GHz. The device is packaged in a lead-free/green/RoHS-compliant industry-standard SOT-89 package.

The WTM106 is designed a Darlingtonpair amplifier using high reliability InGap/GaAs HBT process.

#### **Functional Block Diagram**





#### **Features**

- 5~6000MHz
- P1dB = 17.7dBm @ 1900MHz
- Gain = 18.6 dB @ 1900MHz
- NF = 3.4 dB @ 1900 MHz
- IRL= 12dB and ORL=14dB
- 50 Ohm Cascadable Gain Block
- Unconditionally Stable
- +5V Single Supply, 55mA Current
- Industry Standard SOT-89 Package

## **Applications**

- Cellular / PCS / 3G / LTE repeaters
- Wireless Data / WLAN
- CATV & Cable Modem
- ISM
- Microwave Radio



## **Absolute Maximum Ratings**

| Parameter                                | Rating        |
|------------------------------------------|---------------|
| Supply Voltage(V <sub>CC</sub> )         | 5.5 V         |
|                                          | 100 mA        |
| Max RF Input Power                       | 20 dBm        |
| Operating Temperature( $T_L$ )           | -40 to +85°C  |
| Storage Temperature                      | -65 to +150°C |
| ESD Sensitivity (Human Body Model : HBM) | Class 1C      |
| Moisture Sensitivity Level (MSL)         | MSL1          |

#### Note.

- 1. Stress under Absolute Maximum Ratings may result in permanent damage to the device.
- 2. Extended application of Absolute Maximum ratings condition to the device may reduce device reliability.
- 3. These rating are not intended for continuous normal operation.
  - ✓ HBM : Class 1C in accordance with JEDEC Standard JESD22-A114B
  - ✓ MSL: MSL1 in accordance with JEDEC Standard J-STD-020

#### **ESD CAUTION**

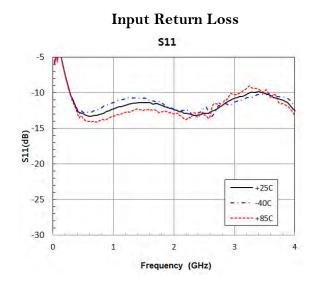


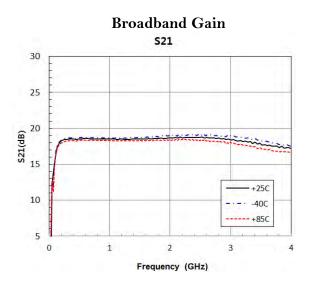
ESD (electrostatic discharge ) sensitive device.

Although this product features proprietary protection circuitry, damage may occur on devices subjected to high energy ESD.

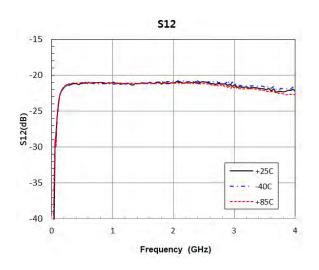


#### **Typical Performance at Key Operating Frequencies**

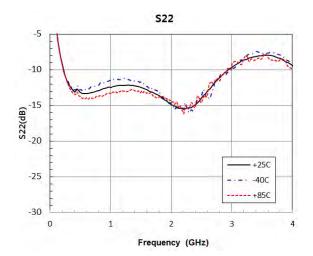

Vcc = +5V,  $T_A=25$ °C, unless otherwise noted. ( $I_D = 55$ mA)


| Parameter | 900MHz | 1900MHz | 2140MHz | 2650MHz | Unit |
|-----------|--------|---------|---------|---------|------|
| S21       | 18.4   | 18.6    | 18.6    | 18.5    | dB   |
| OIP3      | 31.5   | 30.5    | 29.0    | 26.5    | dBm  |
| P1dB      | 17.8   | 17.7    | 17.2    | 15.2    | dBm  |
| S11       | -12.5  | -12.1   | -12.8   | -13.3   | dB   |
| S22       | -13.5  | -15.2   | -16.1   | -12.5   | dB   |
| S12       | -12.5  | -14.3   | -15.4   | -12.5   | dB   |
| NF        | 3.2    | 3.4     | 3.4     | 3.4     | dB   |

- 1. Typical RF performance measured on a Wavetrack evaluation board.
- 2. RF performance data taken with application circuit element values.
- 3. OIP3 measured with two tones at an output 5dBm per tone separated 1MHz.
- 4.  $Z_S = Z_L = 50 \text{ ohm}$ .

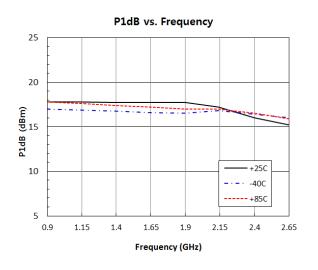


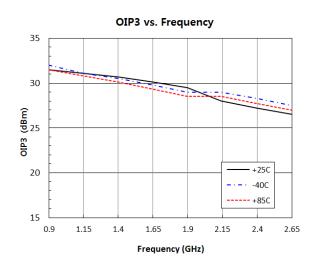

#### **S-Parameter**





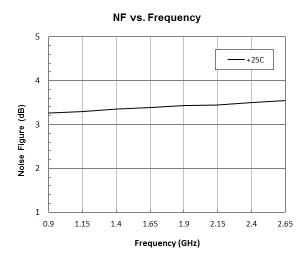

#### **Reverse** isolation





#### **Output Return Loss**

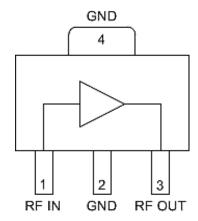





#### P1-dB & OIP3



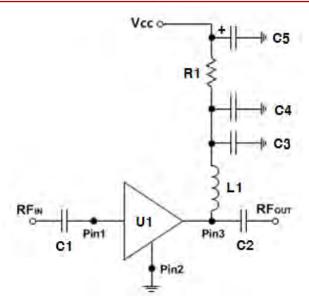



Note. +5dBm / Tone Output Power

# **Noise Figure**






## Pin Configuration and Function Descriptions



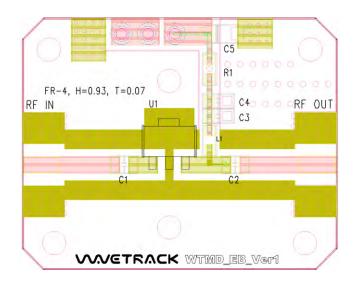
| Pin Number | Function | Description                                                                                                                  |
|------------|----------|------------------------------------------------------------------------------------------------------------------------------|
| 1          | RF IN    | RF input pin. This pin requires the use of an external DC blocking capacitor.                                                |
| 2          | GND      | Connection to ground. Use via holes as close to the device ground leads as possible to reduce ground path inductance.        |
| 3          | RF OUT   | RF output pin. DC voltage is present on this pin. DC blocking capacitor is necessary. An RF choke is needed to feed DC bias. |



### **Application Circuit Schematic**



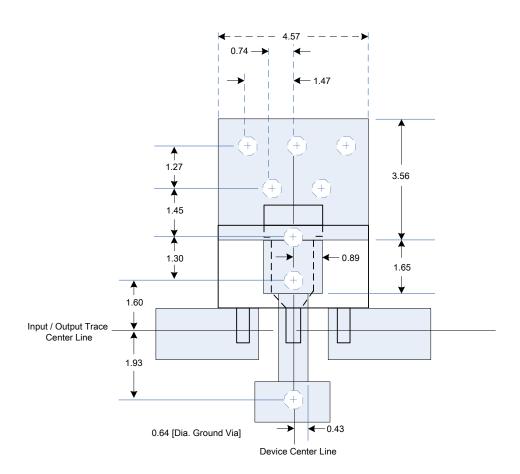
#### Note.


- 1. Application circuit schematic shows the basic connection for operating WTM106.
- 2. A 5V dc bias is supplied to the amplifier through the bias inductor(L1) connected to RF out (Pin3).
- 3. However, for optimum performance at customer board, the value of L1 may vary with board design.
- 4. To get RF performance at under 100MHz, the bias inductor (L1) must be optimized.

## **Application Circuit Element Values**

| Reference | Value  | Unit | Description                 | Manufacture |
|-----------|--------|------|-----------------------------|-------------|
| U1        | WTM106 | -    | RF Gain Block Amplifier     | WAVETRACK   |
| C1        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C2        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| С3        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C4        | 10     | [nF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C5        | 10     | [uF] | Tantalum Capacitor          | Samsung     |
| L1        | 39     | [nH] | Inductor. 0402, 5%, Ceramic | Samsung     |
| R1        | 0      | [Ω]  | Resistor Chip               | Samsung     |




### **Application Circuit Layout**



- 1. Package bottom must be connected to RF/DC ground.
- 2. Provide a large ground pad area under device ground pin.
- 3. A sufficient number of via holes should be used to connect the top and bottom ground plane.
- 4. The circuit board used in the application should apply RF circuit design techniques.
- 5. RF lines should have 50 ohm impedance.
  - ✓ Circuit board material : FR-4
  - ✓ Circuit board height: 0.93mm:



#### **Recommended PCB Land Pattern**



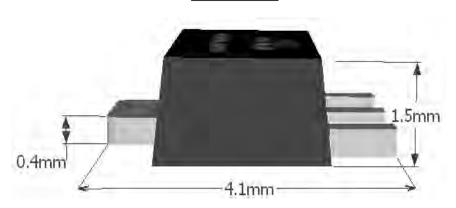
- 1. All dimensions are in millimeters.
- 2. Dimensions are inclusive of plating
- 3. Solder the copper pad on the backside of the device package to the ground plane.
- 4. Provide a large ground pad area under device pins 1,2,3 with many plated via holes as shown.
- 5. Dimensions not given for 50ohm line.
- 6. Scale accordingly for different board thickness and dielectric contacts.
- 7. We recommend 1 or 2ounce copper.



## **Package Information & Outline Drawing**

• Marking: Manufacture

Part Number - WTMXXX


Lot code - YYWWXX

YY = Year / WW = Working Week / XX = Wafer No.

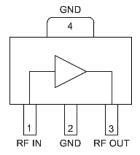
• Outline Drawing : Millimeters

# 4.5mm 4.1mm WTM 106 YYWWXX 1.5mm 3.0mm 1.5mm

#### **SIDE VIEW**






#### **General Description**

The WTM107 is a general RF gain boosting amplifier MMIC that have high linearity & gain performance. The device features flat high gain with excellent in/out return loss. The amplifier typically provides 17.2dB gain, 28.5dBm OIP3 and 3.3dB Noise Figure while drawing 46mA current at 1.9GHz. The device is packaged in a lead-free/green/RoHS-compliant industry-standard SOT-89 package.

The WTM107 is designed a Darlingtonpair amplifier using high reliability InGap/GaAs HBT process.

#### **Functional Block Diagram**





#### **Features**

- 5~6000MHz
- P1dB = 15.6 dBm @ 1900MHz
- Gain = 17.2 dB @1900MHz
- OIP3 = 28.5 dBm @1900MHz
- NF = 3.3 dB @1900MHz
- IRL= 13dB and ORL=13dB
- 50 Ohm Cascadable Gain Block
- Unconditionally Stable
- +5V Single Supply, 46mA Current
- Industry Standard SOT-89 Package

## **Applications**

- Cellular / PCS / 3G / LTE repeaters
- Wireless Data / WLAN
- CATV & Cable Modem
- ISM
- Microwave Radio



## **Absolute Maximum Ratings**

| Parameter                                | Rating        |
|------------------------------------------|---------------|
| Supply Voltage( $V_{CC}$ )               | 5.5 V         |
| $Max\ Device\ Current(I_D)$              | 100 mA        |
| Max RF Input Power                       | 20 dBm        |
| Operating Temperature( $T_L$ )           | -40 to +85°C  |
| Storage Temperature                      | -65 to +150°C |
| ESD Sensitivity (Human Body Model : HBM) | Class 1C      |
| Moisture Sensitivity Level (MSL)         | MSL1          |

#### Note.

- 1. Stress under Absolute Maximum Ratings may result in permanent damage to the device.
- 2. Extended application of Absolute Maximum ratings condition to the device may reduce device reliability.
- 3. These rating are not intended for continuous normal operation.
  - ✓ HBM : Class 1C in accordance with JEDEC Standard JESD22-A114B
  - ✓ MSL: MSL1 in accordance with JEDEC Standard J-STD-020

#### **ESD CAUTION**

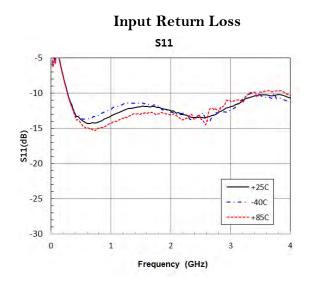


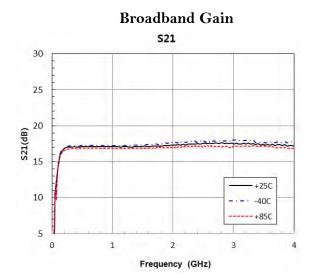
ESD (electrostatic discharge ) sensitive device.

Although this product features proprietary protection circuitry, damage may occur on devices subjected to high energy ESD.

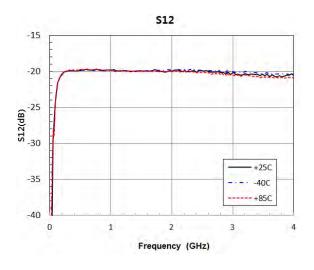


#### **Typical Performance at Key Operating Frequencies**

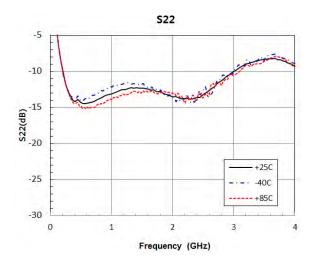

Vcc = +5V,  $T_A = 25$ °C, unless otherwise noted. ( $I_D = 46mA$ )


| Parameter | 900MHz | 1900MHz | 2140MHz | 2650MHz | Unit |
|-----------|--------|---------|---------|---------|------|
| S21       | 17.0   | 17.2    | 17.3    | 17.4    | dB   |
| OIP3      | 31.0   | 28.5    | 27.5    | 24.5    | dBm  |
| P1dB      | 15.9   | 15.6    | 15.2    | 12.7    | dBm  |
| S11       | -13.5  | -13.2   | -13.7   | -12.3   | dB   |
| S22       | -13.3  | -13.2   | -12.7   | -12.3   | dB   |
| S12       | -19.5  | -19.3   | -19.4   | -20.5   | dB   |
| NF        | 3.2    | 3.3     | 3.3     | 3.3     | dB   |

- 1. Typical RF performance measured on a Wavetrack evaluation board.
- 2. RF performance data taken with application circuit element values.
- 3. OIP3 measured with two tones at an output 5dBm per tone separated 1MHz.
- 4.  $Z_S = Z_L = 50 \text{ ohm}$ .



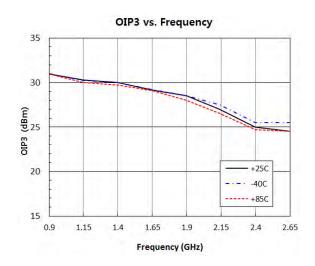

#### **S-Parameter**





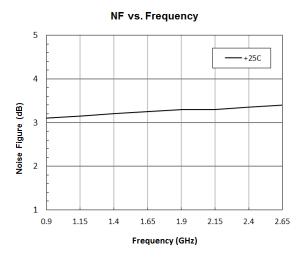

#### Reverse isolation





#### **Output Return Loss**

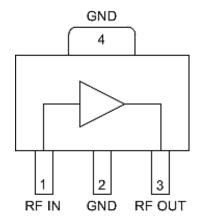





#### P1-dB & OIP3



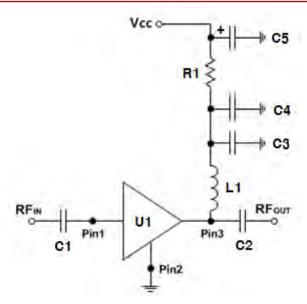



Note. +5dBm / Tone Output Power

# **Noise Figure**






## Pin Configuration and Function Descriptions



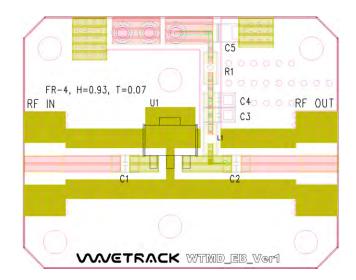
| Pin Number | Function | Description                                                                                                                  |
|------------|----------|------------------------------------------------------------------------------------------------------------------------------|
| 1          | RF IN    | RF input pin. This pin requires the use of an external DC blocking capacitor.                                                |
| 2          | GND      | Connection to ground. Use via holes as close to the device ground leads as possible to reduce ground path inductance.        |
| 3          | RF OUT   | RF output pin. DC voltage is present on this pin. DC blocking capacitor is necessary. An RF choke is needed to feed DC bias. |



#### **Application Circuit Schematic**



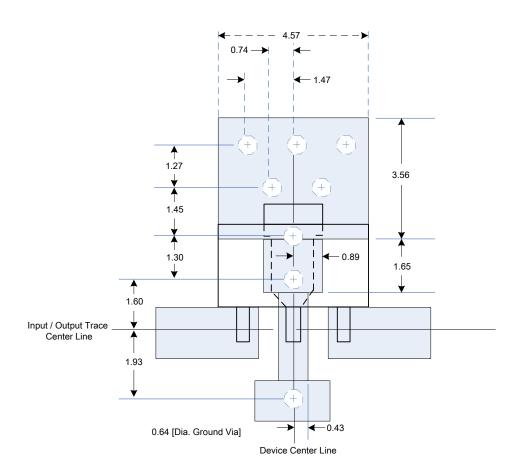
#### Note.


- 1. Application circuit schematic shows the basic connection for operating WTM107.
- 2. A 5V dc bias is supplied to the amplifier through the bias inductor(L1) connected to RF out (Pin3).
- 3. However, for optimum performance at customer board, the value of L1 may vary with board design.
- 4. To get RF performance at under 100MHz, the bias inductor (L1) must be optimized.

# **Application Circuit Element Values**

| Reference | Value  | Unit | Description                 | Manufacture |
|-----------|--------|------|-----------------------------|-------------|
| U1        | WTM107 | -    | RF Gain Block Amplifier     | WAVETRACK   |
| C1        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C2        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| С3        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C4        | 10     | [nF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C5        | 10     | [uF] | Tantalum Capacitor          | Samsung     |
| L1        | 39     | [nH] | Inductor. 0402, 5%, Ceramic | Samsung     |
| R1        | 0      | [Ω]  | Resistor Chip               | Samsung     |




### **Application Circuit Layout**



- 1. Package bottom must be connected to RF/DC ground.
- 2. Provide a large ground pad area under device ground pin.
- 3. A sufficient number of via holes should be used to connect the top and bottom ground plane.
- 4. The circuit board used in the application should apply RF circuit design techniques.
- 5. RF lines should have 50 ohm impedance.
  - ✓ Circuit board material : FR-4
  - ✓ Circuit board height: 0.93mm:



#### **Recommended PCB Land Pattern**



- 1. All dimensions are in millimeters.
- 2. Dimensions are inclusive of plating
- 3. Solder the copper pad on the backside of the device package to the ground plane.
- 4. Provide a large ground pad area under device pins 1,2,3 with many plated via holes as shown.
- 5. Dimensions not given for 50ohm line.
- 6. Scale accordingly for different board thickness and dielectric contacts.
- 7. We recommend 1 or 2ounce copper.



## **Package Information & Outline Drawing**

• Marking: Manufacture

Part Number - WTMXXX

Lot code - YYWWXX

YY = Year / WW = Working Week / XX = Wafer No.

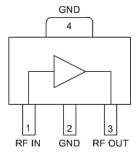
• Outline Drawing : Millimeters

# 4.1mm 4.5mm 4.1mm WTM 107 YYWWXX 2.4mm 3.0mm -0.5mm

#### **SIDE VIEW**






#### **General Description**

The WTM108 is a general RF gain boosting amplifier MMIC that have high linearity & gain performance. The device features flat high gain with excellent in/out return loss. The amplifier typically provides 17dB gain, 32.5dBm OIP3 and 3.8dB Noise Figure while drawing 73mA current at 1.9GHz. The device is packaged in a lead-free/green/RoHS-compliant industry-standard SOT-89 package.

The WTM108 is designed a Darlingtonpair amplifier using high reliability InGap/GaAs HBT process.

#### **Functional Block Diagram**





#### **Features**

- 5~6000MHz
- P1dB = 18.8 dBm @ 1900MHz
- Gain = 17.0 dB @ 1900MHz
- NF = 3.8 dB @ 1900 MHz
- IRL= 13dB and ORL=14dB
- 50 Ohm Cascadable Gain Block
- Unconditionally Stable
- +5V Single Supply, 73mA Current
- Industry Standard SOT-89 Package

## **Applications**

- Cellular / PCS / 3G / LTE repeaters
- Wireless Data / WLAN
- CATV & Cable Modem
- ISM
- Microwave Radio



## **Absolute Maximum Ratings**

| Parameter                                | Rating        |
|------------------------------------------|---------------|
| Supply Voltage(V <sub>CC</sub> )         | 5.5 V         |
|                                          | 100 mA        |
| Max RF Input Power                       | 20 dBm        |
| Operating Temperature( $T_L$ )           | -40 to +85°C  |
| Storage Temperature                      | -65 to +150°C |
| ESD Sensitivity (Human Body Model : HBM) | Class 1C      |
| Moisture Sensitivity Level (MSL)         | MSL1          |

#### Note.

- 1. Stress under Absolute Maximum Ratings may result in permanent damage to the device.
- 2. Extended application of Absolute Maximum ratings condition to the device may reduce device reliability.
- 3. These rating are not intended for continuous normal operation.
  - ✓ HBM : Class 1C in accordance with JEDEC Standard JESD22-A114B
  - ✓ MSL: MSL1 in accordance with JEDEC Standard J-STD-020

#### **ESD CAUTION**



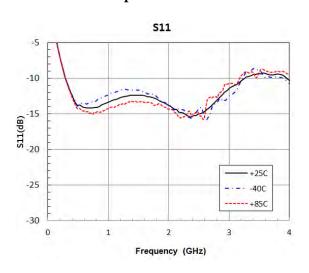
ESD (electrostatic discharge ) sensitive device.

Although this product features proprietary protection circuitry, damage may occur on devices subjected to high energy ESD.

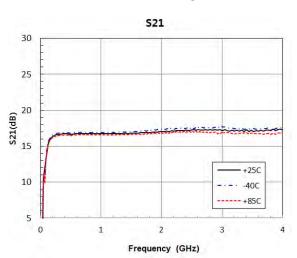


#### **Typical Performance at Key Operating Frequencies**

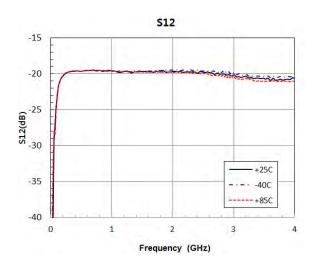
Vcc = +5V,  $T_A = 25$ °C, unless otherwise noted. ( $I_D = 73$ mA)


| Parameter | 900MHz | 1900MHz | 2140MHz | 2650MHz | Unit |
|-----------|--------|---------|---------|---------|------|
| S21       | 16.6   | 17.0    | 17.0    | 17.0    | dB   |
| OIP3      | 35.5   | 32.5    | 31.0    | 29.5    | dBm  |
| P1dB      | 20.0   | 18.8    | 18.5    | 18.5    | dBm  |
| S11       | -13.7  | -13.3   | -14.6   | -14.3   | dB   |
| S22       | -13.6  | -14.0   | -14.6   | -11.1   | dB   |
| S12       | -19.5  | -19.3   | -19.4   | -20.5   | dB   |
| NF        | 3.6    | 3.8     | 3.9     | 3.8     | dB   |

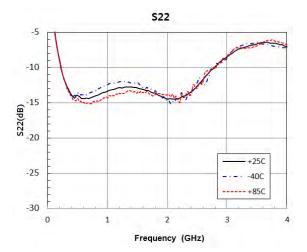
- 1. Typical RF performance measured on a Wavetrack evaluation board.
- 2. RF performance data taken with application circuit element values.
- 3. OIP3 measured with two tones at an output 5dBm per tone separated 1MHz.
- 4.  $Z_S = Z_L = 50 \text{ ohm}$ .




#### **S-Parameter**

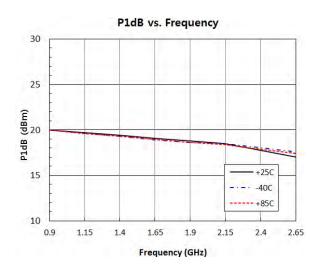

#### Input Return Loss

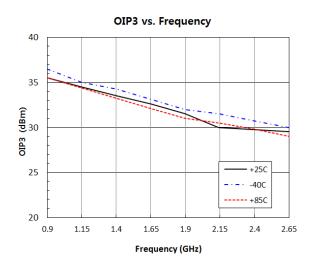



#### **Broadband Gain**



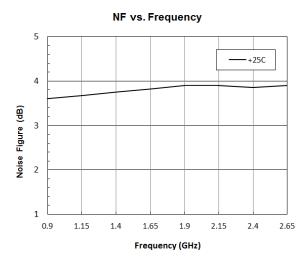
#### Reverse isolation





#### **Output Return Loss**

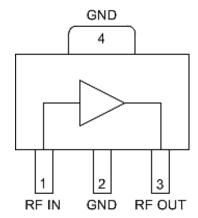





#### P1-dB & OIP3



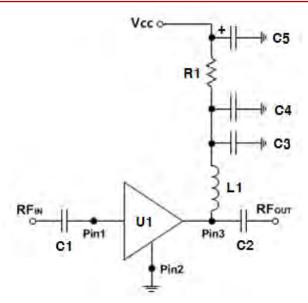



Note. +5dBm / Tone Output Power

# **Noise Figure**






## Pin Configuration and Function Descriptions



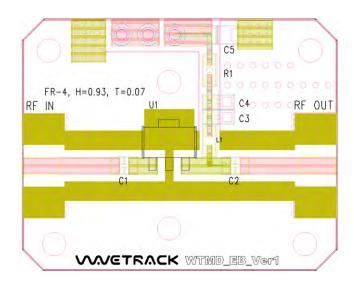
| Pin Number | Function | Description                                                                                                                  |
|------------|----------|------------------------------------------------------------------------------------------------------------------------------|
| 1          | RF IN    | RF input pin. This pin requires the use of an external DC blocking capacitor.                                                |
| 2          | GND      | Connection to ground. Use via holes as close to the device ground leads as possible to reduce ground path inductance.        |
| 3          | RF OUT   | RF output pin. DC voltage is present on this pin. DC blocking capacitor is necessary. An RF choke is needed to feed DC bias. |



### **Application Circuit Schematic**



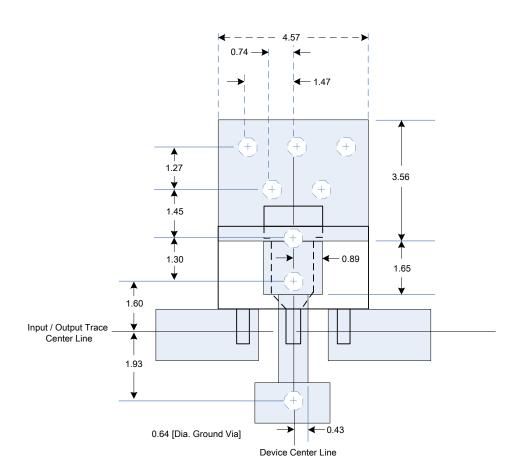
#### Note.


- 1. Application circuit schematic shows the basic connection for operating WTM108.
- 2. A 5V dc bias is supplied to the amplifier through the bias inductor(L1) connected to RF out (Pin3).
- 3. However, for optimum performance at customer board, the value of L1 may vary with board design.
- 4. To get RF performance at under 100MHz, the bias inductor (L1) must be optimized.

# **Application Circuit Element Values**

| Reference | Value  | Unit | Description                 | Manufacture |
|-----------|--------|------|-----------------------------|-------------|
| U1        | WTM108 | -    | RF Gain Block Amplifier     | WAVETRACK   |
| C1        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C2        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C3        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C4        | 10     | [nF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C5        | 10     | [uF] | Tantalum Capacitor          | Samsung     |
| L1        | 39     | [nH] | Inductor. 0402, 5%, Ceramic | Samsung     |
| R1        | 0      | [Ω]  | Resistor Chip               | Samsung     |




#### **Application Circuit Layout**



- 1. Package bottom must be connected to RF/DC ground.
- 2. Provide a large ground pad area under device ground pin.
- 3. A sufficient number of via holes should be used to connect the top and bottom ground plane.
- 4. The circuit board used in the application should apply RF circuit design techniques.
- 5. RF lines should have 50 ohm impedance.
  - ✓ Circuit board material : FR-4
  - ✓ Circuit board height: 0.93mm:



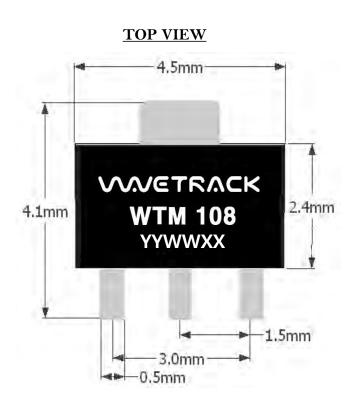
#### **Recommended PCB Land Pattern**



- 1. All dimensions are in millimeters.
- 2. Dimensions are inclusive of plating
- 3. Solder the copper pad on the backside of the device package to the ground plane.
- 4. Provide a large ground pad area under device pins 1,2,3 with many plated via holes as shown.
- 5. Dimensions not given for 50ohm line.
- 6. Scale accordingly for different board thickness and dielectric contacts.
- 7. We recommend 1 or 2ounce copper.



#### **Package Information & Outline Drawing**


• Marking: Manufacture

Part Number - WTMXXX

Lot code - YYWWXX

YY = Year / WW = Working Week / XX = Wafer No.

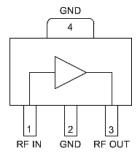
• Outline Drawing : Millimeters



#### **SIDE VIEW**






#### **General Description**

The WTM109 is a general RF gain boosting amplifier MMIC that have high linearity & gain performance. The device features flat high gain with excellent in/out return loss. The amplifier typically provides 15.8dB gain, 27.5dBm OIP3 and 3.7dB Noise Figure while drawing 45mA current at 1.9GHz. The device is packaged in a lead-free/green/RoHS-compliant industry-standard SOT-89 package.

The WTM109 is designed a Darlingtonpair amplifier using high reliability InGap/GaAs HBT process.

#### **Functional Block Diagram**





#### **Features**

- 5~6000MHz
- P1dB = 15.3 dBm @ 1900MHz
- Gain = 15.8 dB @1900MHz
- OIP3 = 27.5 dBm @ 1900 MHz
- NF = 3.7 dB @1900MHz
- IRL= 15dB and ORL=13dB
- 50 Ohm Cascadable Gain Block
- Unconditionally Stable
- +5V Single Supply, 45mA Current
- Industry Standard SOT-89 Package

# **Applications**

- Cellular / PCS / 3G / LTE repeaters
- Wireless Data / WLAN
- CATV & Cable Modem
- ISM
- Microwave Radio



## **Absolute Maximum Ratings**

| Parameter                                | Rating        |
|------------------------------------------|---------------|
| Supply Voltage( $V_{CC}$ )               | 5.5 V         |
|                                          | 100 mA        |
| Max RF Input Power                       | 20 dBm        |
| Operating Temperature( $T_L$ )           | -40 to +85°C  |
| Storage Temperature                      | -65 to +150°C |
| ESD Sensitivity (Human Body Model : HBM) | Class 1C      |
| Moisture Sensitivity Level (MSL)         | MSL1          |

#### Note.

- 1. Stress under Absolute Maximum Ratings may result in permanent damage to the device.
- 2. Extended application of Absolute Maximum ratings condition to the device may reduce device reliability.
- 3. These rating are not intended for continuous normal operation.
  - ✓ HBM : Class 1C in accordance with JEDEC Standard JESD22-A114B
  - ✓ MSL: MSL1 in accordance with JEDEC Standard J-STD-020

#### **ESD CAUTION**



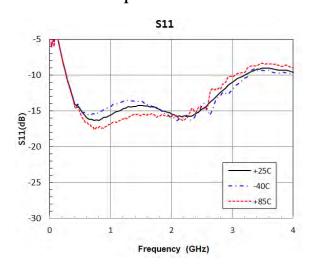
ESD (electrostatic discharge ) sensitive device.

Although this product features proprietary protection circuitry, damage may occur on devices subjected to high energy ESD.

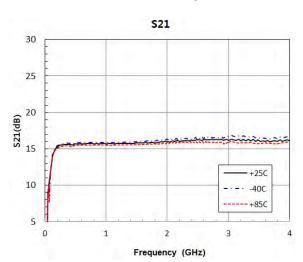


#### **Typical Performance at Key Operating Frequencies**

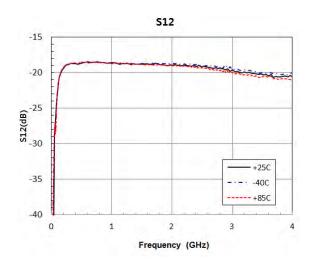
Vcc = +5V,  $T_A=25$ °C, unless otherwise noted. ( $I_D = 45mA$ )


| Parameter | 900MHz | 1900MHz | 2140MHz | 2650MHz | Unit |
|-----------|--------|---------|---------|---------|------|
| S21       | 15.6   | 15.8    | 15.9    | 16.0    | dB   |
| OIP3      | 28.5   | 27.5    | 27.0    | 25.0    | dBm  |
| P1dB      | 15.2   | 15.3    | 15.0    | 12.5    | dBm  |
| S11       | -15.9  | -15.1   | -15.7   | -13.7   | dB   |
| S22       | -15.2  | -13.5   | -13.3   | -10.6   | dB   |
| S12       | -18.5  | -18.8   | -19.0   | -19.5   | dB   |
| NF        | 3.5    | 3.7     | 3.7     | 3.7     | dB   |

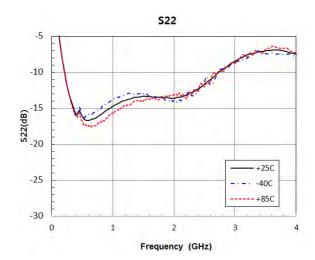
- 1. Typical RF performance measured on a Wavetrack evaluation board.
- 2. RF performance data taken with application circuit element values.
- 3. OIP3 measured with two tones at an output 5dBm per tone separated 1MHz.
- 4.  $Z_S = Z_L = 50 \text{ ohm}$ .




## **S-Parameter**

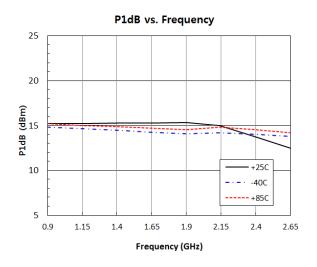

## Input Return Loss

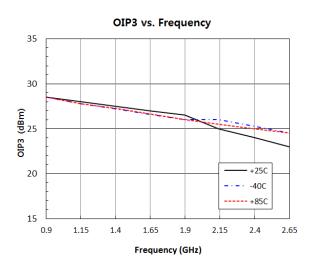



#### **Broadband Gain**



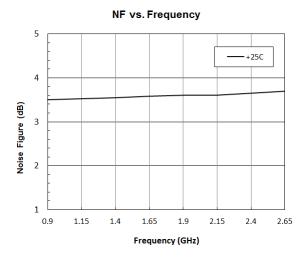
#### Reverse isolation





## **Output Return Loss**

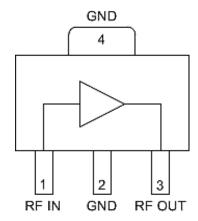





## P1-dB & OIP3



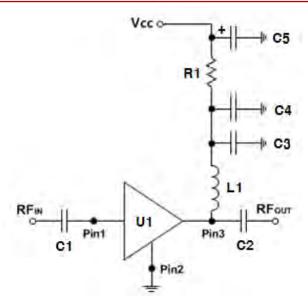



Note. +5dBm / Tone Output Power

# **Noise Figure**






## Pin Configuration and Function Descriptions



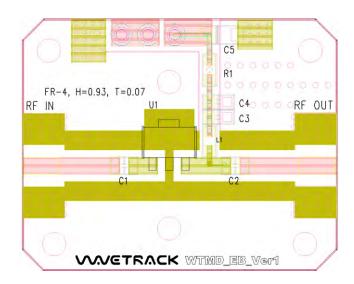
| Pin Number | Function | Description                                                                                                                  |
|------------|----------|------------------------------------------------------------------------------------------------------------------------------|
| 1          | RF IN    | RF input pin. This pin requires the use of an external DC blocking capacitor.                                                |
| 2          | GND      | Connection to ground. Use via holes as close to the device ground leads as possible to reduce ground path inductance.        |
| 3          | RF OUT   | RF output pin. DC voltage is present on this pin. DC blocking capacitor is necessary. An RF choke is needed to feed DC bias. |



## **Application Circuit Schematic**



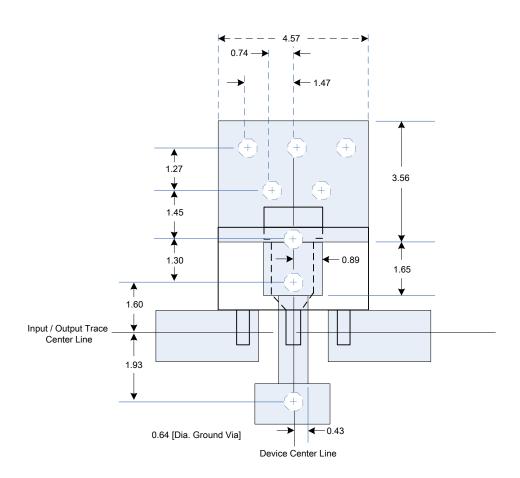
#### Note.


- 1. Application circuit schematic shows the basic connection for operating WTM109.
- 2. A 5V dc bias is supplied to the amplifier through the bias inductor(L1) connected to RF out (Pin3).
- 3. However, for optimum performance at customer board, the value of L1 may vary with board design.
- 4. To get RF performance at under 100MHz, the bias inductor (L1) must be optimized.

## **Application Circuit Element Values**

| Reference | Value  | Unit | Description                 | Manufacture |
|-----------|--------|------|-----------------------------|-------------|
| U1        | WTM109 | -    | RF Gain Block Amplifier     | WAVETRACK   |
| C1        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C2        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| С3        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C4        | 10     | [nF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C5        | 10     | [uF] | Tantalum Capacitor          | Samsung     |
| L1        | 39     | [nH] | Inductor. 0402, 5%, Ceramic | Samsung     |
| R1        | О      | [Ω]  | Resistor Chip               | Samsung     |




## **Application Circuit Layout**



- 1. Package bottom must be connected to RF/DC ground.
- 2. Provide a large ground pad area under device ground pin.
- 3. A sufficient number of via holes should be used to connect the top and bottom ground plane.
- 4. The circuit board used in the application should apply RF circuit design techniques.
- 5. RF lines should have 50 ohm impedance.
  - ✓ Circuit board material : FR-4
  - ✓ Circuit board height: 0.93mm:



## **Recommended PCB Land Pattern**



- 1. All dimensions are in millimeters.
- 2. Dimensions are inclusive of plating
- 3. Solder the copper pad on the backside of the device package to the ground plane.
- 4. Provide a large ground pad area under device pins 1,2,3 with many plated via holes as shown.
- 5. Dimensions not given for 50ohm line.
- 6. Scale accordingly for different board thickness and dielectric contacts.
- 7. We recommend 1 or 2ounce copper.



## **Package Information & Outline Drawing**

• Marking: Manufacture

Part Number - WTMXXX

Lot code - YYWWXX

YY = Year / WW = Working Week / XX = Wafer No.

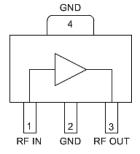
• Outline Drawing : Millimeters

# 4.5mm 4.5mm 4.1mm WTM 109 YYWWXX 2.4mm 3.0mm 3.0mm

## **SIDE VIEW**






## **General Description**

The WTM110 is a general RF gain boosting amplifier MMIC that have high linearity & gain performance. The device features flat high gain with excellent in/out return loss. The amplifier typically provides 15.6dB gain, 32dBm OIP3 and 4.3dB Noise Figure while drawing 76mA current at 1.9GHz. The device is packaged in a lead-free/green/RoHS-compliant industry-standard SOT-89 package.

The WTM110 is designed a Darlingtonpair amplifier using high reliability InGap/GaAs HBT process.

## **Functional Block Diagram**





#### **Features**

- 5~6000MHz
- P1dB = 18.8 dBm @ 1900MHz
- Gain = 15.6 dB @ 1900MHz
- OIP3 = 32.0 dBm @ 1900 MHz
- NF = 4.3 dB @ 1900 MHz
- IRL= 13dB and ORL=13dB
- 50 Ohm Cascadable Gain Block
- Unconditionally Stable
- +5V Single Supply, 76mA Current
- Industry Standard SOT-89 Package

## **Applications**

- Cellular / PCS / 3G / LTE repeaters
- Wireless Data / WLAN
- CATV & Cable Modem
- ISM
- Microwave Radio



## **Absolute Maximum Ratings**

| Parameter                                | Rating        |
|------------------------------------------|---------------|
| Supply Voltage(V <sub>CC</sub> )         | 5.5 V         |
|                                          | 100 mA        |
| Max RF Input Power                       | 20 dBm        |
| Operating Temperature( $T_L$ )           | -40 to +85°C  |
| Storage Temperature                      | -65 to +150°C |
| ESD Sensitivity (Human Body Model : HBM) | Class 1C      |
| Moisture Sensitivity Level (MSL)         | MSL1          |

#### Note.

- 1. Stress under Absolute Maximum Ratings may result in permanent damage to the device.
- 2. Extended application of Absolute Maximum ratings condition to the device may reduce device reliability.
- 3. These rating are not intended for continuous normal operation.
  - ✓ HBM: Class 1C in accordance with JEDEC Standard JESD22-A114B
  - ✓ MSL: MSL1 in accordance with JEDEC Standard J-STD-020

## **ESD CAUTION**



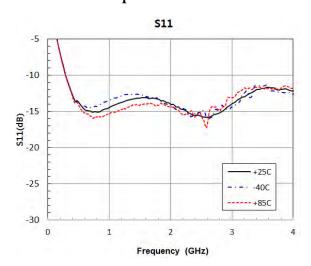
ESD (electrostatic discharge ) sensitive device.

Although this product features proprietary protection circuitry, damage may occur on devices subjected to high energy ESD.

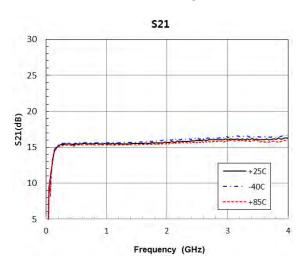


## **Typical Performance at Key Operating Frequencies**

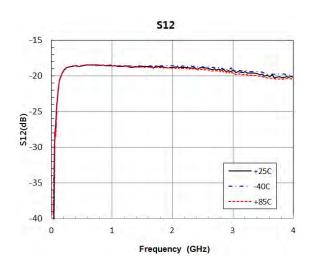
Vcc = +5V,  $T_A = 25$ °C, unless otherwise noted. ( $I_D = 76mA$ )


| Parameter | 900MHz | 1900MHz | 2140MHz | 2650MHz | Unit |
|-----------|--------|---------|---------|---------|------|
| S21       | 15.3   | 15.6    | 15.7    | 15.8    | dB   |
| OIP3      | 36.0   | 32.0    | 31.5    | 30.5    | dBm  |
| P1dB      | 19.7   | 18.8    | 18.8    | 18.8    | dBm  |
| S11       | -14.7  | -13.6   | -14.5   | -14.5   | dB   |
| S22       | -14.5  | -13.3   | -13.5   | -11.7   | dB   |
| S12       | -18.6  | -18.9   | -19.1   | -19.5   | dB   |
| NF        | 4.0    | 4.3     | 4.3     | 4.3     | dB   |

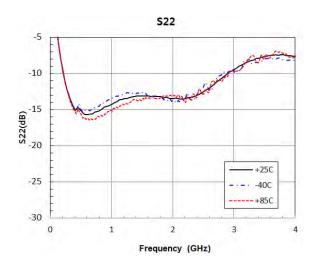
- 1. Typical RF performance measured on a Wavetrack evaluation board.
- 2. RF performance data taken with application circuit element values.
- 3. OIP3 measured with two tones at an output 5dBm per tone separated 1MHz.
- 4.  $Z_S = Z_L = 50 \text{ ohm}$ .




## **S-Parameter**

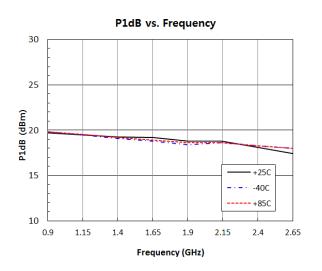

## **Input Return Loss**

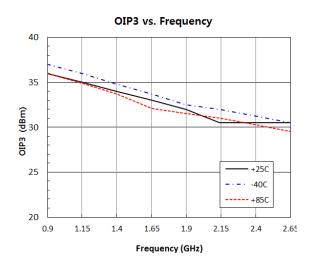



#### **Broadband Gain**



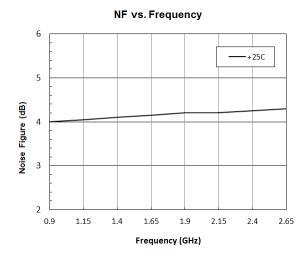
#### Reverse isolation





## **Output Return Loss**

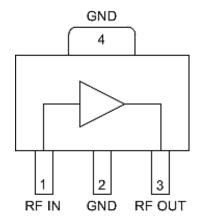





## P1-dB & OIP3



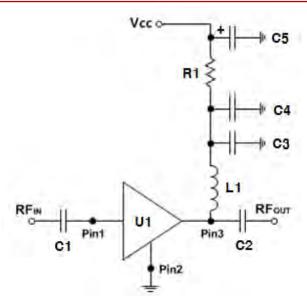



Note. +5dBm / Tone Output Power

# **Noise Figure**






## Pin Configuration and Function Descriptions



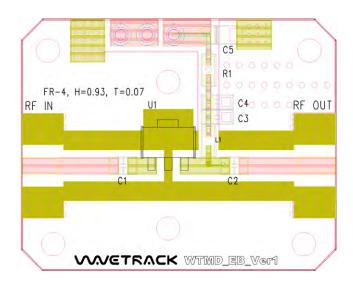
| Pin Number | Function | Description                                                                                                                  |
|------------|----------|------------------------------------------------------------------------------------------------------------------------------|
| 1          | RF IN    | RF input pin. This pin requires the use of an external DC blocking capacitor.                                                |
| 2          | GND      | Connection to ground. Use via holes as close to the device ground leads as possible to reduce ground path inductance.        |
| 3          | RF OUT   | RF output pin. DC voltage is present on this pin. DC blocking capacitor is necessary. An RF choke is needed to feed DC bias. |



## **Application Circuit Schematic**



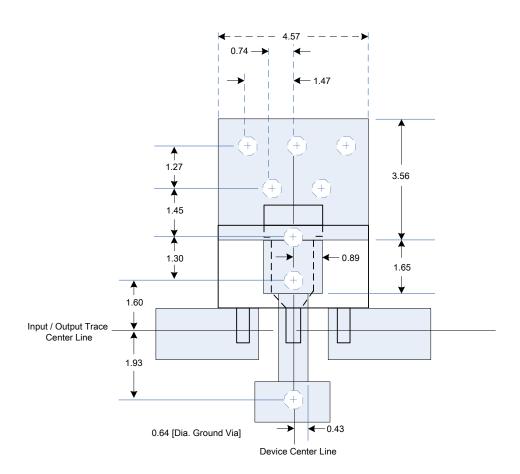
#### Note.


- 1. Application circuit schematic shows the basic connection for operating WTM110.
- 2. A 5V dc bias is supplied to the amplifier through the bias inductor(L1) connected to RF out (Pin3).
- 3. However, for optimum performance at customer board, the value of L1 may vary with board design.
- 4. To get RF performance at under 100MHz, the bias inductor (L1) must be optimized.

# **Application Circuit Element Values**

| Reference | Value  | Unit | Description                 | Manufacture |
|-----------|--------|------|-----------------------------|-------------|
| U1        | WTM110 | -    | RF Gain Block Amplifier     | WAVETRACK   |
| C1        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C2        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| С3        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C4        | 10     | [nF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C5        | 10     | [uF] | Tantalum Capacitor          | Samsung     |
| L1        | 39     | [nH] | Inductor. 0402, 5%, Ceramic | Samsung     |
| R1        | 0      | [Ω]  | Resistor Chip               | Samsung     |




## **Application Circuit Layout**



- 1. Package bottom must be connected to RF/DC ground.
- 2. Provide a large ground pad area under device ground pin.
- 3. A sufficient number of via holes should be used to connect the top and bottom ground plane.
- 4. The circuit board used in the application should apply RF circuit design techniques.
- 5. RF lines should have 50 ohm impedance.
  - ✓ Circuit board material : FR-4
  - ✓ Circuit board height: 0.93mm:



## **Recommended PCB Land Pattern**



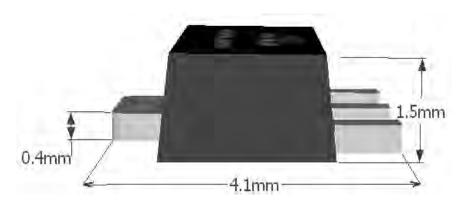
- 1. All dimensions are in millimeters.
- 2. Dimensions are inclusive of plating
- 3. Solder the copper pad on the backside of the device package to the ground plane.
- 4. Provide a large ground pad area under device pins 1,2,3 with many plated via holes as shown.
- 5. Dimensions not given for 50ohm line.
- 6. Scale accordingly for different board thickness and dielectric contacts.
- 7. We recommend 1 or 2ounce copper.



## **Package Information & Outline Drawing**

• Marking: Manufacture

Part Number - WTMXXX


Lot code - YYWWXX

YY = Year / WW = Working Week / XX = Wafer No.

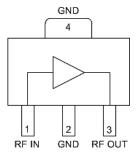
• Outline Drawing : Millimeters

# 4.5mm 4.5mm 4.1mm WTM 110 YYWWXX 2.4mm 3.0mm 3.0mm

## **SIDE VIEW**






## **General Description**

The WTM111 is a general RF gain boosting amplifier MMIC that have high linearity & gain performance. The device features flat high gain with excellent in/out return loss. The amplifier typically provides 14.1dB gain, 32.5dBm OIP3 and 4.0dB Noise Figure while drawing 73mA current at 1.9GHz. The device is packaged in a lead-free/green/RoHS-compliant industry-standard SOT-89 package.

The WTM111 is designed a Darlingtonpair amplifier using high reliability InGap/GaAs HBT process.

## **Functional Block Diagram**





#### **Features**

- 5~6000MHz
- P1dB = 17.6 dBm @ 1900MHz
- Gain = 14.1 dB @ 1900MHz
- OIP3 = 32.5 dBm @1900 MHz
- NF = 4.0 dB @ 1900 MHz
- IRL= 13dB and ORL=13dB
- 50 Ohm Cascadable Gain Block
- Unconditionally Stable
- +5V Single Supply, 73mA Current
- Industry Standard SOT-89 Package

# **Applications**

- Cellular / PCS / 3G / LTE repeaters
- Wireless Data / WLAN
- CATV & Cable Modem
- ISM
- · Microwave Radio



## **Absolute Maximum Ratings**

| Parameter                                | Rating        |
|------------------------------------------|---------------|
| Supply Voltage(V <sub>CC</sub> )         | 5.5 V         |
|                                          | 100 mA        |
| Max RF Input Power                       | 20 dBm        |
| Operating Temperature( $T_L$ )           | -40 to +85°C  |
| Storage Temperature                      | -65 to +150°C |
| ESD Sensitivity (Human Body Model : HBM) | Class 1C      |
| Moisture Sensitivity Level (MSL)         | MSL1          |

#### Note.

- 1. Stress under Absolute Maximum Ratings may result in permanent damage to the device.
- 2. Extended application of Absolute Maximum ratings condition to the device may reduce device reliability.
- 3. These rating are not intended for continuous normal operation.
  - ✓ HBM : Class 1C in accordance with JEDEC Standard JESD22-A114B
  - ✓ MSL: MSL1 in accordance with JEDEC Standard J-STD-020

## **ESD CAUTION**

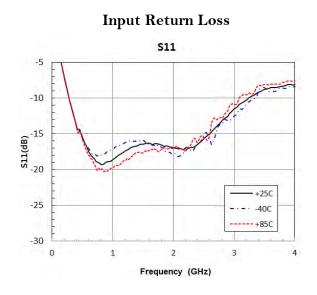


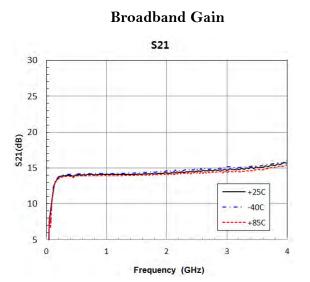
ESD (electrostatic discharge ) sensitive device.

Although this product features proprietary protection circuitry, damage may occur on devices subjected to high energy ESD.

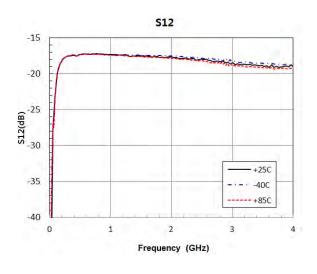


## **Typical Performance at Key Operating Frequencies**

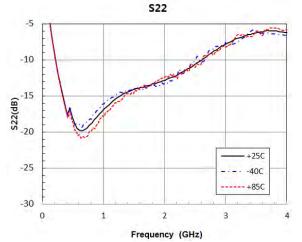

Vcc = +5V,  $T_A=25$ °C, unless otherwise noted. ( $I_D = 73$ mA)


| Parameter | 900MHz | 1900MHz | 2140MHz | 2650MHz | Unit |
|-----------|--------|---------|---------|---------|------|
| S21       | 14.0   | 14.1    | 14.2    | 14.3    | dB   |
| OIP3      | 36.0   | 32.5    | 30.5    | 29.0    | dBm  |
| P1dB      | 19.3   | 17.6    | 17.4    | 16.8    | dBm  |
| S11       | -18.9  | -16.7   | -17.1   | -14.5   | dB   |
| S22       | -17.7  | -13.0   | -12.3   | -9.7    | dB   |
| S12       | -17.3  | -17.9   | -18.1   | -18.5   | dB   |
| NF        | 3.8    | 4.0     | 4.0     | 4.0     | dB   |

- 1. Typical RF performance measured on a Wavetrack evaluation board.
- 2. RF performance data taken with application circuit element values.
- 3. OIP3 measured with two tones at an output 5dBm per tone separated 1MHz.
- 4.  $Z_S = Z_L = 50 \text{ ohm}$ .

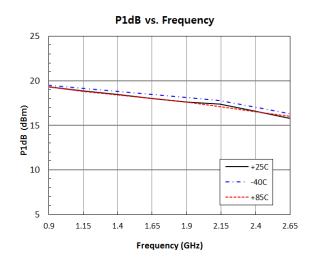


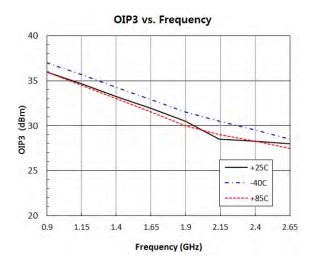

## **S-Parameter**





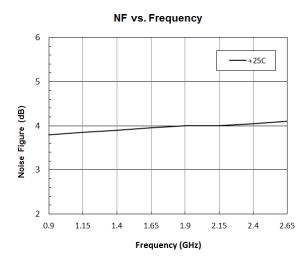

### Reverse isolation





## **Output Return Loss**

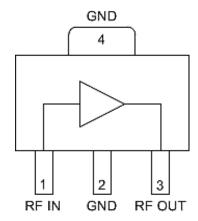





## P1-dB & OIP3



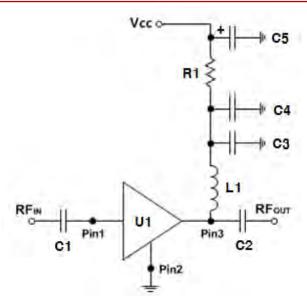



Note. +5dBm / Tone Output Power

# **Noise Figure**






## Pin Configuration and Function Descriptions



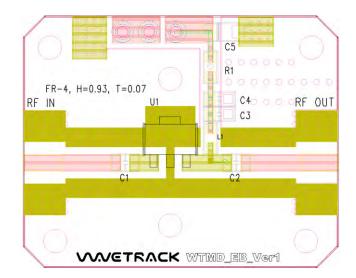
| Pin Number | Function | Description                                                                                                                  |
|------------|----------|------------------------------------------------------------------------------------------------------------------------------|
| 1          | RF IN    | RF input pin. This pin requires the use of an external DC blocking capacitor.                                                |
| 2          | GND      | Connection to ground. Use via holes as close to the device ground leads as possible to reduce ground path inductance.        |
| 3          | RF OUT   | RF output pin. DC voltage is present on this pin. DC blocking capacitor is necessary. An RF choke is needed to feed DC bias. |



## **Application Circuit Schematic**



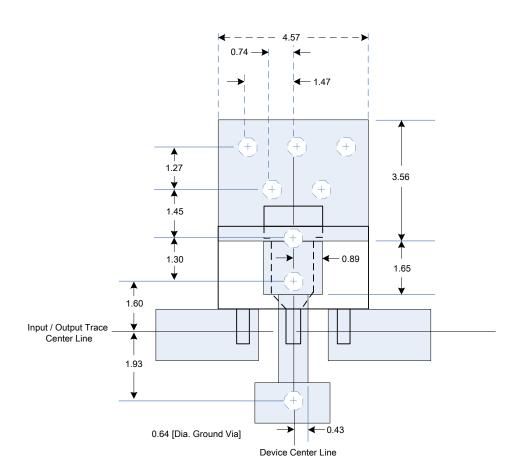
#### Note.


- 1. Application circuit schematic shows the basic connection for operating WTM111.
- 2. A 5V dc bias is supplied to the amplifier through the bias inductor(L1) connected to RF out (Pin3).
- 3. However, for optimum performance at customer board, the value of L1 may vary with board design.
- 4. To get RF performance at under 100MHz, the bias inductor (L1) must be optimized.

# **Application Circuit Element Values**

| Reference | Value  | Unit | Description                 | Manufacture |
|-----------|--------|------|-----------------------------|-------------|
| U1        | WTM111 | -    | RF Gain Block Amplifier     | WAVETRACK   |
| C1        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C2        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| С3        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C4        | 10     | [nF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C5        | 10     | [uF] | Tantalum Capacitor          | Samsung     |
| L1        | 39     | [nH] | Inductor. 0402, 5%, Ceramic | Samsung     |
| R1        | О      | [Ω]  | Resistor Chip               | Samsung     |




## **Application Circuit Layout**



- 1. Package bottom must be connected to RF/DC ground.
- 2. Provide a large ground pad area under device ground pin.
- 3. A sufficient number of via holes should be used to connect the top and bottom ground plane.
- 4. The circuit board used in the application should apply RF circuit design techniques.
- 5. RF lines should have 50 ohm impedance.
  - ✓ Circuit board material : FR-4
  - ✓ Circuit board height: 0.93mm:



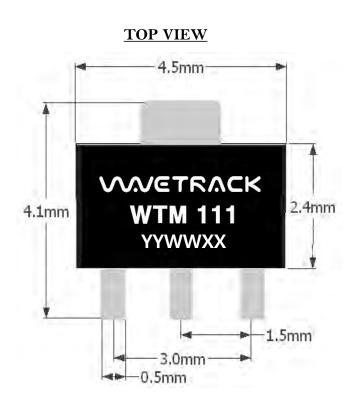
## **Recommended PCB Land Pattern**



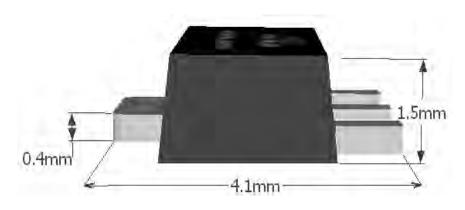
- 1. All dimensions are in millimeters.
- 2. Dimensions are inclusive of plating
- 3. Solder the copper pad on the backside of the device package to the ground plane.
- 4. Provide a large ground pad area under device pins 1,2,3 with many plated via holes as shown.
- 5. Dimensions not given for 50ohm line.
- 6. Scale accordingly for different board thickness and dielectric contacts.
- 7. We recommend 1 or 2ounce copper.



## **Package Information & Outline Drawing**


• Marking: Manufacture

Part Number - WTMXXX


Lot code - YYWWXX

YY = Year / WW = Working Week / XX = Wafer No.

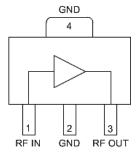
• Outline Drawing : Millimeters



## **SIDE VIEW**






## **General Description**

The WTM112 is a general RF gain boosting amplifier MMIC that have high linearity & gain performance. The device features flat high gain with excellent in/out return loss. The amplifier typically provides 26.5dB gain, 39.6dBm OIP3 and 3.9dB Noise Figure while drawing 96mA current at 140MHz. The device is packaged in a lead-free/green/RoHS-compliant industry-standard SOT-89 package.

The WTM112 is designed a Darlingtonpair amplifier using high reliability InGap/GaAs HBT process.

## **Functional Block Diagram**





#### **Features**

- 5~1000MHz
- P1dB = 20.5 dBm @140MHz
- Gain = 26.5 dB @140MHz
- OIP3 = 39.6 dBm @140MHz
- NF = 3.9 dB @ 140 MHz
- IRL= 18.6dB and ORL=15.4dB
- 50 Ohm Cascadable Gain Block
- Unconditionally Stable
- +5V Single Supply, 96mA Current
- Industry Standard SOT-89 Package

# **Applications**

- Cellular / PCS / 3G / LTE repeaters
- Wireless Data / WLAN
- CATV & Cable Modem
- ISM
- Microwave Radio



## **Absolute Maximum Ratings**

| Parameter                                | Rating        |
|------------------------------------------|---------------|
| Supply Voltage(V <sub>CC</sub> )         | 5.5 V         |
|                                          | 100 mA        |
| Max RF Input Power                       | 20 dBm        |
| Operating Temperature( $T_L$ )           | -40 to +85°C  |
| Storage Temperature                      | -65 to +150°C |
| ESD Sensitivity (Human Body Model : HBM) | Class 1C      |
| Moisture Sensitivity Level (MSL)         | MSL1          |

#### Note.

- 1. Stress under Absolute Maximum Ratings may result in permanent damage to the device.
- 2. Extended application of Absolute Maximum ratings condition to the device may reduce device reliability.
- 3. These rating are not intended for continuous normal operation.
  - ✓ HBM : Class 1C in accordance with JEDEC Standard JESD22-A114B
  - ✓ MSL: MSL1 in accordance with JEDEC Standard J-STD-020

## **ESD CAUTION**

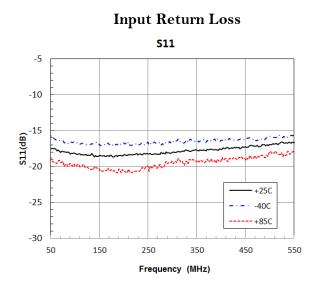


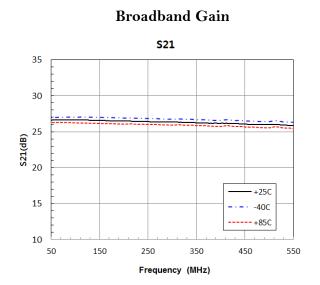
ESD (electrostatic discharge ) sensitive device.

Although this product features proprietary protection circuitry, damage may occur on devices subjected to high energy ESD.

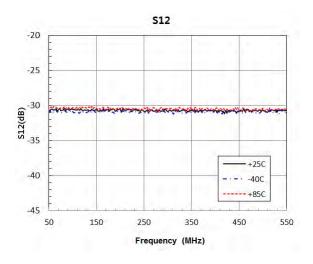


## **Typical Performance at Key Operating Frequencies**

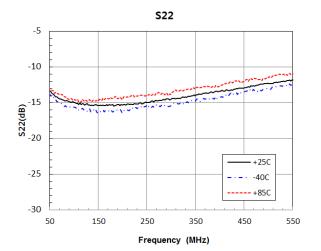

Vcc = +5V,  $T_A = 25$ °C, unless otherwise noted. ( $I_D = 96mA$ )


| Parameter | 80MHz | 140MHz | 250MHz | 500MHz | Unit |
|-----------|-------|--------|--------|--------|------|
| S21       | 26.6  | 26.5   | 26.4   | 26.0   | dB   |
| OIP3      | 39.5  | 39.6   | 37.0   | 36.6   | dBm  |
| P1dB      | 20.4  | 20.5   | 20.6   | 20.5   | dBm  |
| S11       | -18   | -18.6  | -18.2  | -16.9  | dB   |
| S22       | -14.6 | -15.4  | -14.9  | -12.3  | dB   |
| S12       | -30.7 | -30.5  | -30.8  | -30.8  | dB   |
| NF        | 3.5   | 3.6    | 3.9    | 3.7    | dB   |

- 1. Typical RF performance measured on a Wavetrack evaluation board.
- 2. RF performance data taken with application circuit element values.
- 3. OIP3 measured with two tones at an output 5dBm per tone separated 1MHz.
- 4.  $Z_S = Z_L = 50 \text{ ohm}$ .

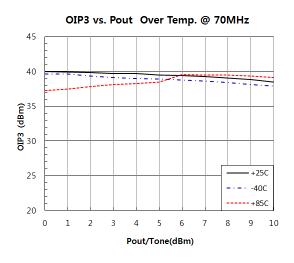



## **S-Parameter**



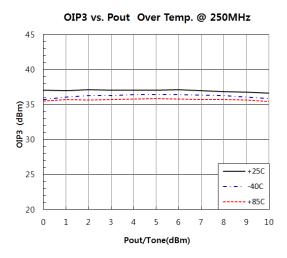


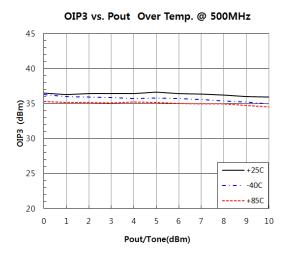

#### Reverse isolation





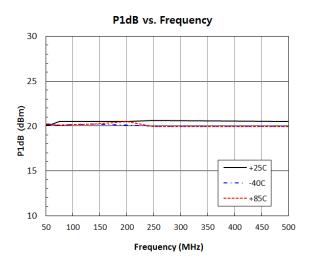
## **Output Return Loss**

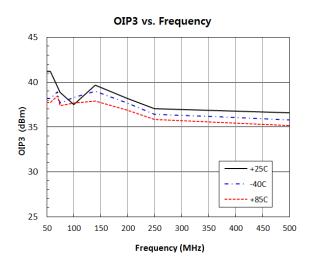



## **OIP3** vs Pout

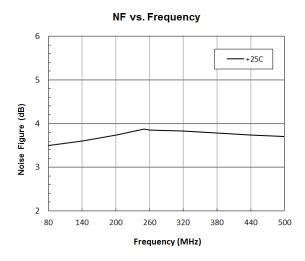




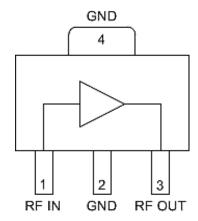






## P1-dB & OIP3



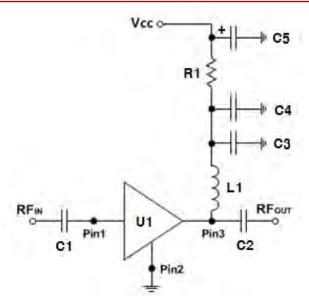



Note. +5dBm / Tone Output Power

# **Noise Figure**






## Pin Configuration and Function Descriptions



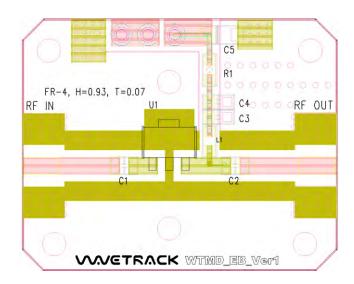
| Pin Number | Function | Description                                                                                                                  |  |
|------------|----------|------------------------------------------------------------------------------------------------------------------------------|--|
| 1          | RF IN    | RF input pin. This pin requires the use of an external DC blocking capacitor.                                                |  |
| 2          | GND      | Connection to ground. Use via holes as close to the device ground leads as possible to reduce ground path inductance.        |  |
| 3          | RF OUT   | RF output pin. DC voltage is present on this pin. DC blocking capacitor is necessary. An RF choke is needed to feed DC bias. |  |



## **Application Circuit Schematic**



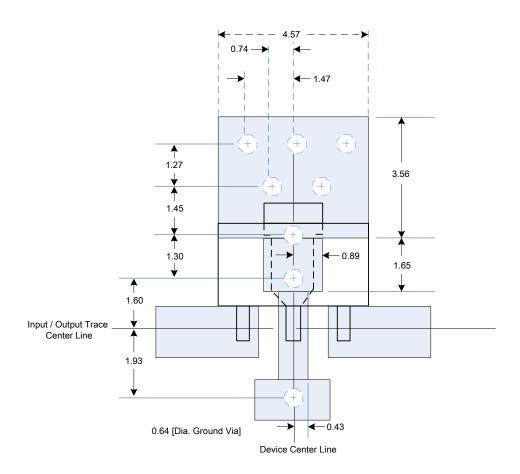
#### Note.


- 1. Application circuit schematic shows the basic connection for operating WTM112.
- 2. A 5V dc bias is supplied to the amplifier through the bias inductor(L1) connected to RF out (Pin3).
- 3. However, for optimum performance at customer board, the value of L1 may vary with board design.
- 4. To get RF performance at under 100MHz, the bias inductor (L1) must be optimized.

# **Application Circuit Element Values**

| Reference | Value  | Unit | Description                 | Manufacture |
|-----------|--------|------|-----------------------------|-------------|
| U1        | WTM112 | -    | RF Gain Block Amplifier     | WAVETRACK   |
| C1        | 6.8    | [nF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C2        | 6.8    | [nF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C3        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C4        | 1000   | [nF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C5        | 10     | [uF] | Tantalum Capacitor          | Samsung     |
| L1        | 680    | [nH] | Inductor. 0402, 5%, Ceramic | Samsung     |
| R1        | 3.9    | [Ω]  | Resistor Chip               | Samsung     |




## **Application Circuit Layout**



- 1. Package bottom must be connected to RF/DC ground.
- 2. Provide a large ground pad area under device ground pin.
- 3. A sufficient number of via holes should be used to connect the top and bottom ground plane.
- 4. The circuit board used in the application should apply RF circuit design techniques.
- 5. RF lines should have 50 ohm impedance.
  - ✓ Circuit board material : FR-4
  - ✓ Circuit board height: 0.93mm:



### **Recommended PCB Land Pattern**



### Note.

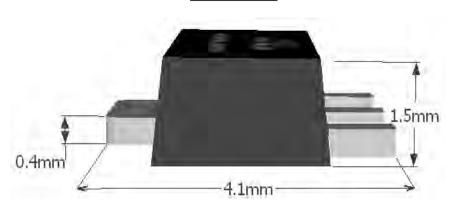
- 1. All dimensions are in millimeters.
- 2. Dimensions are inclusive of plating
- 3. Solder the copper pad on the backside of the device package to the ground plane.
- 4. Provide a large ground pad area under device pins 1,2,3 with many plated via holes as shown.
- 5. Dimensions not given for 50ohm line.
- 6. Scale accordingly for different board thickness and dielectric contacts.
- 7. We recommend 1 or 2ounce copper.



### **Package Information & Outline Drawing**

• Marking: Manufacture

Part Number - WTMXXX


Lot code - YYWWXX

YY = Year / WW = Working Week / XX = Wafer No.

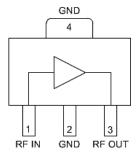
• Outline Drawing : Millimeters

# 4.5mm 4.5mm 4.1mm WTM112 YYWWXX 2.4mm 3.0mm 3.0mm

### **SIDE VIEW**






### **General Description**

The WTM114 is a general RF gain boosting amplifier MMIC that have high linearity & gain performance. The device features flat high gain with excellent in/out return loss. The amplifier typically provides 17.6dB gain, 41.5dBm OIP3 and 5.4dB Noise Figure while drawing 77mA current at 70MHz. The device is packaged in a lead-free/green/RoHS-compliant industry-standard SOT-89 package.

The WTM114 is designed a Darlingtonpair amplifier using high reliability InGap/GaAs HBT process.

### **Functional Block Diagram**





### **Features**

- 5~1000MHz
- P1dB = 23.1 dBm @70MHz
- Gain = 17.6 dB @70MHz
- NF = 5.4 dB @70 MHz
- IRL= 15.8dB and ORL=18.7dB
- 50 Ohm Cascadable Gain Block
- Unconditionally Stable
- +5V Single Supply, 77mA Current
- Industry Standard SOT-89 Package

### **Applications**

- Cellular / PCS / 3G / LTE repeaters
- Wireless Data / WLAN
- CATV & Cable Modem
- ISM
- Microwave Radio



### **Absolute Maximum Ratings**

| Parameter                                | Rating        |
|------------------------------------------|---------------|
| Supply Voltage(V <sub>CC</sub> )         | 5.5 V         |
|                                          | 100 mA        |
| Max RF Input Power                       | 20 dBm        |
| Operating Temperature( $T_L$ )           | -40 to +85°C  |
| Storage Temperature                      | -65 to +150°C |
| ESD Sensitivity (Human Body Model : HBM) | Class 1C      |
| Moisture Sensitivity Level (MSL)         | MSL1          |

### Note.

- 1. Stress under Absolute Maximum Ratings may result in permanent damage to the device.
- 2. Extended application of Absolute Maximum ratings condition to the device may reduce device reliability.
- 3. These rating are not intended for continuous normal operation.
  - ✓ HBM : Class 1C in accordance with JEDEC Standard JESD22-A114B
  - ✓ MSL: MSL1 in accordance with JEDEC Standard J-STD-020

### **ESD CAUTION**



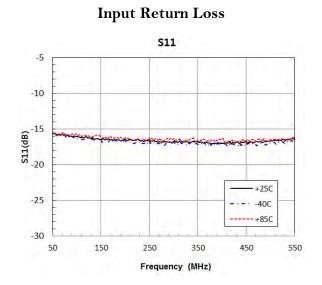
ESD (electrostatic discharge ) sensitive device.

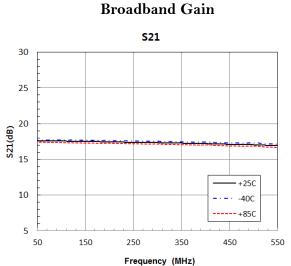
Although this product features proprietary protection circuitry, damage may occur on devices subjected to high energy ESD.



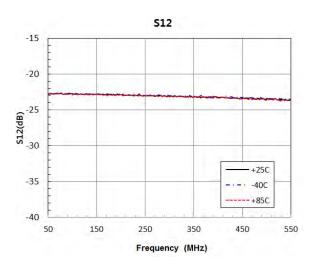
### **Typical Performance at Key Operating Frequencies**

Vcc = +5V,  $T_A=25$ °C, unless otherwise noted. ( $I_D = 77mA$ )

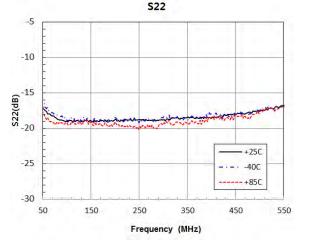

| Parameter | 70MHz | 140MHz | 250MHz | 500MHz | Unit |
|-----------|-------|--------|--------|--------|------|
| S21       | 17.6  | 17.5   | 17.4   | 17.0   | dB   |
| OIP3      | 41.5  | 37.4   | 38.2   | 36.3   | dBm  |
| P1dB      | 23.1  | 23.2   | 23.4   | 22.9   | dBm  |
| S11       | -15.8 | -16.4  | -16.6  | -16.7  | dB   |
| S22       | -18.7 | -18.9  | -18.7  | -17.4  | dB   |
| S12       | -22.8 | -22.8  | -23.0  | -23.5  | dB   |
| NF        | 5.4   | 5.5    | 5.6    | 5.8    | dB   |


### Note.

- 1. Typical RF performance measured on a Wavetrack evaluation board.
- 2. RF performance data taken with application circuit element values.
- 3. OIP3 measured with two tones at an output 5dBm per tone separated 1MHz.
- 4.  $Z_S = Z_L = 50 \text{ ohm}$ .

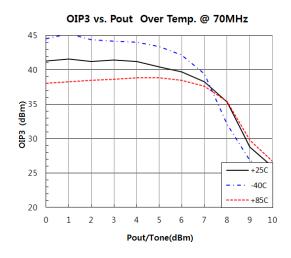


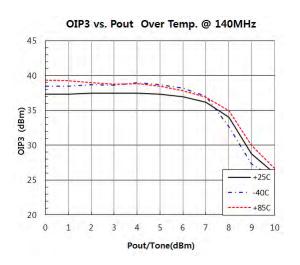

### **S-Parameter**

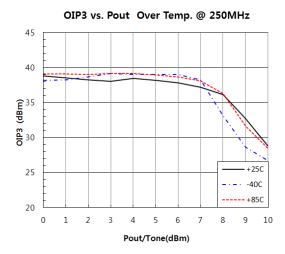


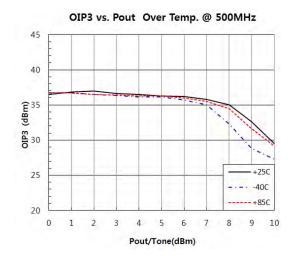



### Reverse isolation



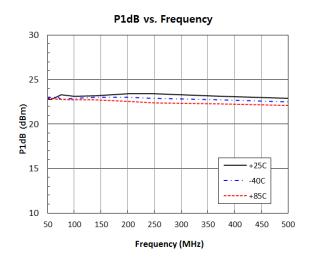


### **Output Return Loss**

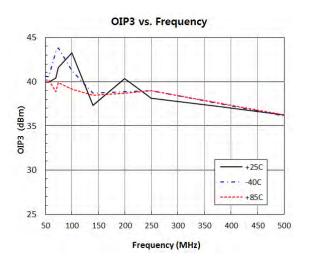



### **OIP3** vs Pout

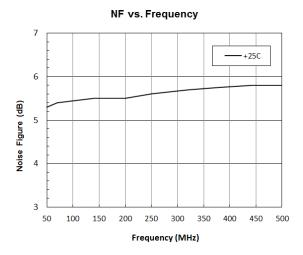




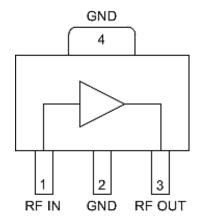






### P1-dB & OIP3



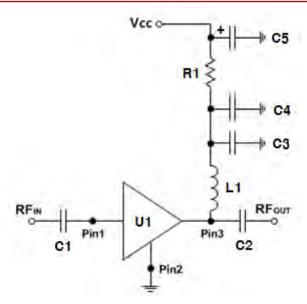



Note. +5dBm / Tone Output Power

### **Noise Figure**






### Pin Configuration and Function Descriptions



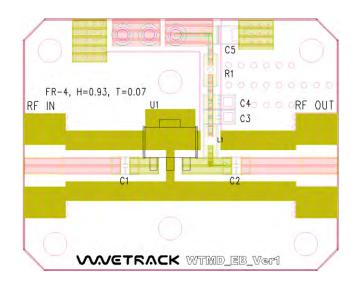
| Pin Number | Function | Description                                                                                                                  |
|------------|----------|------------------------------------------------------------------------------------------------------------------------------|
| 1          | RF IN    | RF input pin. This pin requires the use of an external DC blocking capacitor.                                                |
| 2          | GND      | Connection to ground. Use via holes as close to the device ground leads as possible to reduce ground path inductance.        |
| 3          | RF OUT   | RF output pin. DC voltage is present on this pin. DC blocking capacitor is necessary. An RF choke is needed to feed DC bias. |



### **Application Circuit Schematic**



### Note.

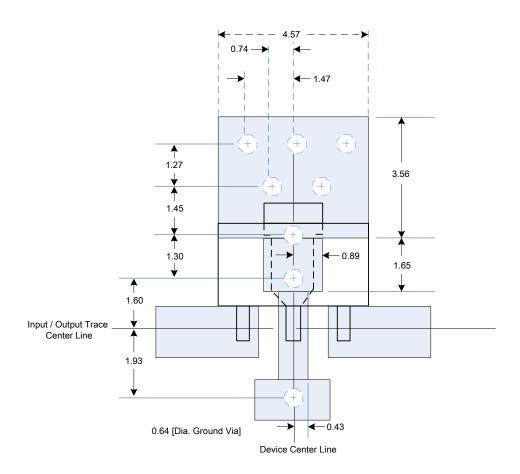

- 1. Application circuit schematic shows the basic connection for operating WTM114.
- 2. A 5V dc bias is supplied to the amplifier through the bias inductor(L1) connected to RF out (Pin3).
- 3. However, for optimum performance at customer board, the value of L1 may vary with board design.
- 4. To get RF performance at under 100MHz, the bias inductor (L1) must be optimized.

### **Application Circuit Element Values**

| Reference | Value  | Unit | Description                 | Manufacture |
|-----------|--------|------|-----------------------------|-------------|
| U1        | WTM114 | -    | RF Gain Block Amplifier     | WAVETRACK   |
| C1        | 6.8    | [nF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C2        | 6.8    | [nF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| С3        | 100    | [pF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C4        | 1000   | [nF] | Cap. Chip 0402, 5%, 10V     | Samsung     |
| C5        | 10     | [uF] | Tantalum Capacitor          | Samsung     |
| L1        | 680    | [nH] | Inductor. 0402, 5%, Ceramic | Samsung     |
| R1        | 5.1    | [Ω]  | Resistor Chip               | Samsung     |



### **Application Circuit Layout**




### Note.

- 1. Package bottom must be connected to RF/DC ground.
- 2. Provide a large ground pad area under device ground pin.
- 3. A sufficient number of via holes should be used to connect the top and bottom ground plane.
- 4. The circuit board used in the application should apply RF circuit design techniques.
- 5. RF lines should have 50 ohm impedance.
  - ✓ Circuit board material : FR-4
  - ✓ Circuit board height: 0.93mm:



### **Recommended PCB Land Pattern**



### Note.

- 1. All dimensions are in millimeters.
- 2. Dimensions are inclusive of plating
- 3. Solder the copper pad on the backside of the device package to the ground plane.
- 4. Provide a large ground pad area under device pins 1,2,3 with many plated via holes as shown.
- 5. Dimensions not given for 50ohm line.
- 6. Scale accordingly for different board thickness and dielectric contacts.
- 7. We recommend 1 or 2ounce copper.

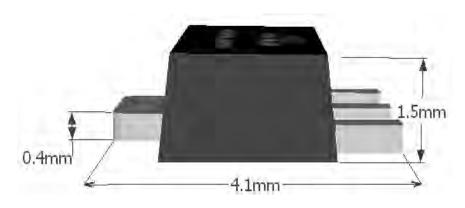


### **Package Information & Outline Drawing**

• Marking : Manufacture

Part Number - WTMXXX

Lot code - YYWWXX


YY = Year / WW = Working Week / XX = Wafer No.

• Outline Drawing : Millimeters

# 4.5mm 4.1mm WTM 114 YYWWXX 1.5mm

### **SIDE VIEW**

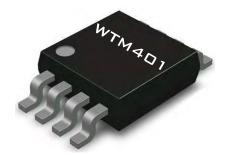
— 3,0mm -0,5mm





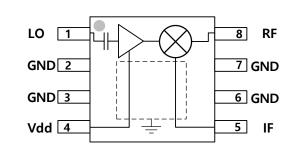
### **General Description**

The WTM401 is a high linearity and dynamic range passive mixer with an integrated LO driver amplifier in an ultra-small lead-free/green/RoHS-compliant MSOP-8 package. The Mixer MMIC is able to operate across from 700MHz to 1500MHz frequency range to achieve +31dBm Input IP3 while drawing a very low 42mA on 5V and 23mA on 3.3V.

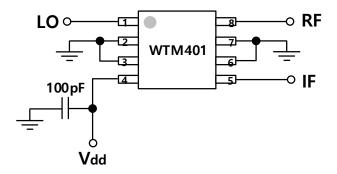

The WTM401 is designed a full-matched 50ohm MMIC mixer using high reliability GaAs FET process.

### **Features**

- +33.1dBm Input IP3
- 10.2 dB Conversion Loss
- RF range: 700~1400 MHz
- LO range: 600~1600 MHz
- IF range: 50~300 MHz
- 38mA @+5V Supply/24mA @ +3.3V Supply
- 0 dBm LO drive level
- No External choke inductor
- Very High LO to RF isolation


### **Applications**

- Cellular / PCS / 3G / LTE repeaters
- Wireless Data / WLAN
- CATV & Cable Modem
- ISM band application
- Microwave Radio




MSOP-8 Exposed Pad Package

### **Functional Block Diagram**



### **Typical Application Configuration**



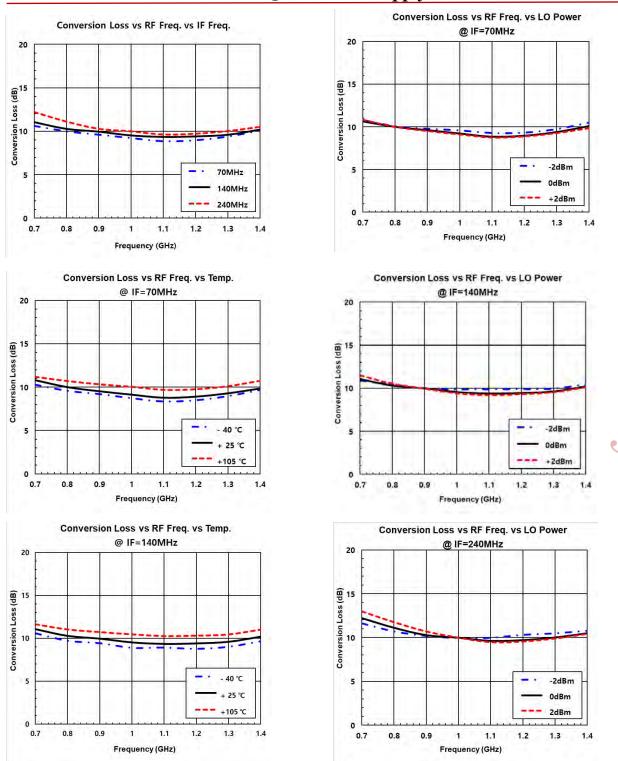




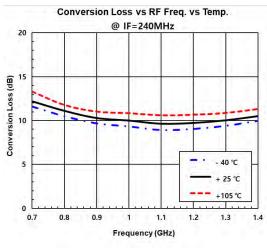
### **Absolute Maximum Ratings**

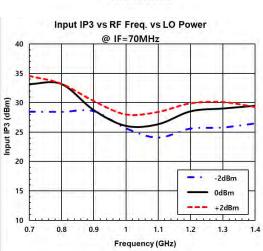
| Parameter                              | Rating        |
|----------------------------------------|---------------|
| Supply $Voltage(V_D)$                  | 5.5 V         |
| Max Device Current(I <sub>D</sub> )    | 70 mA         |
| Max IF/RF Input Power                  | 25 dBm        |
| Max LO Drive Input Power               | 10 dBm        |
| Operating Temperature(T <sub>L</sub> ) | -40 to +105°C |
| Storage Temperature                    | -65 to +150°C |
| ESD Sensitivity(HMB)                   | Class 1A      |
| Moisture Sensitivity Level             | MSL2          |

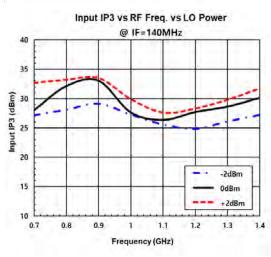


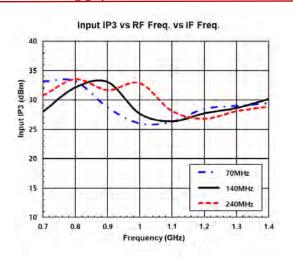

### **Typical Performance**

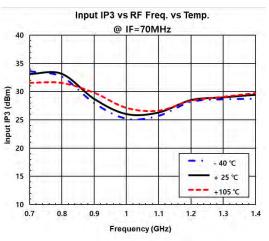
| Parameter             |               | 3.3V          |               |               | 5.0V          |               | Units |
|-----------------------|---------------|---------------|---------------|---------------|---------------|---------------|-------|
| Frequency range<br>RF | 0.8           | 1.0           | 1.3           | 0.8           | 1.0           | 1.3           | GHz   |
| Frequency range<br>LO | 0.56<br>~0.94 | 0.76~<br>1.14 | 1.06~<br>1.44 | 0.56<br>~0.94 | 0.76~<br>1.14 | 1.06~<br>1.44 | GHz   |
| Frequency range IF    |               | 50 ~ 300      |               |               | 50 ~ 300      |               | MHz   |
| Conversion Loss       | 9.9           | 9.2           | 8.9           | 10.0          | 9.2           | 9.3           | dB    |
| LO to RF Isolation    | 18.1          | 15.4          | 13.1          | 15.5          | 14.0          | 11.3          | dB    |
| LO to IF Isolation    | 26.8          | 24.1          | 22.6          | 22.4          | 21.1          | 20.2          | dB    |
| RF to IF Isolation    | 21.7          | 28.7          | 37.0          | 21.5          | 27.1          | 35.7          | dB    |
| Input IP3             | 33.1          | 26.0          | 28.9          | 28.6          | 24.7          | 29.2          | dBm   |
| Input P1dB            | 19            | 19            | 19            | 21            | 22            | 22            | dBm   |
| Supply current        | 24.0          | 22.6          | 22.9          | 38.3          | 37.6          | 38.0          | mA    |

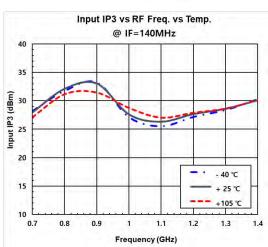

Input IP<sub>3</sub> Test Condition: Tone Spacing=1MHz, RF Input power = 0 dBm/tone, LO driver = 0dBm, T<sub>L</sub>=25°C, Z<sub>S</sub>=Z<sub>L</sub>=50, IF Freq.=70MHz, Converting with low-side LO Freq.



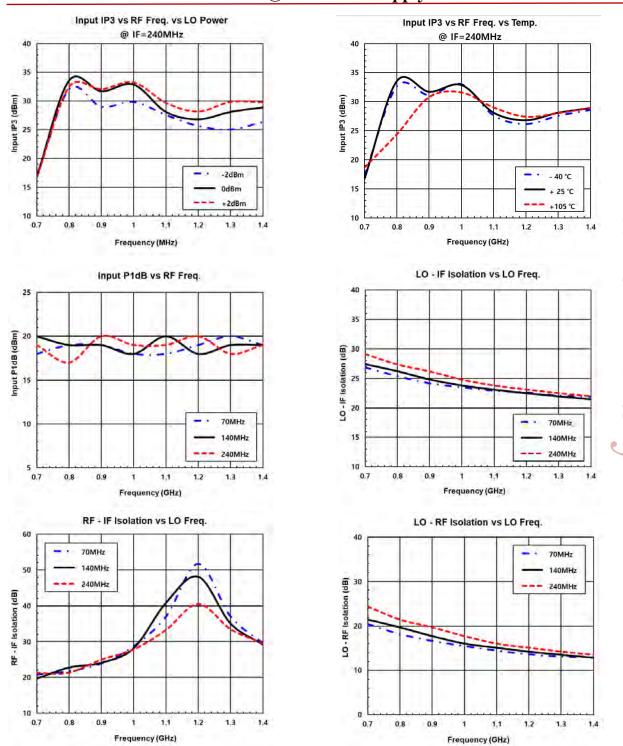







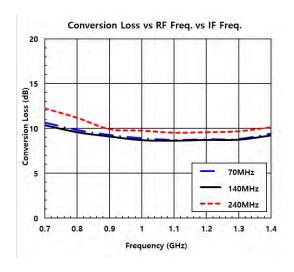


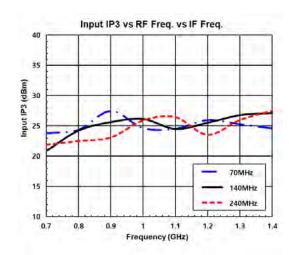









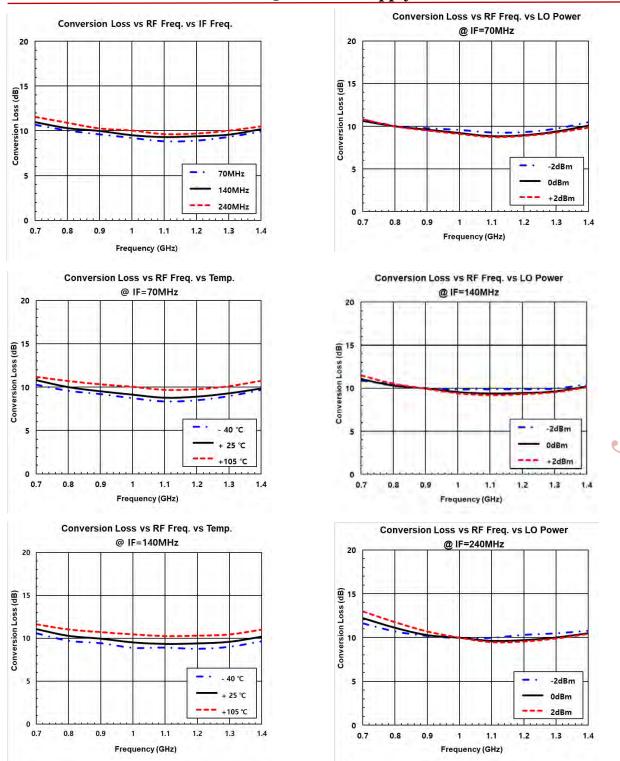


### Down conversion Performance @Vdd=3.3V Supply



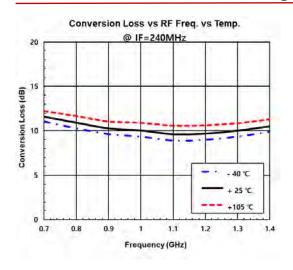


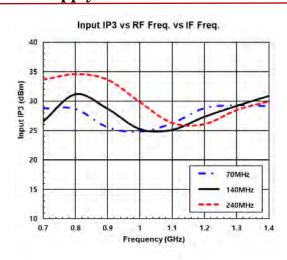

Frequency (GHz)

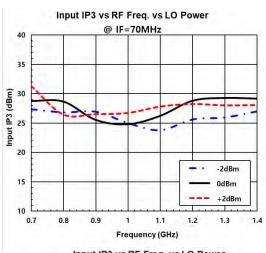


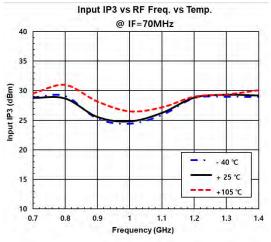


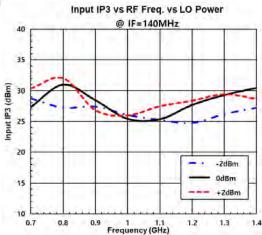


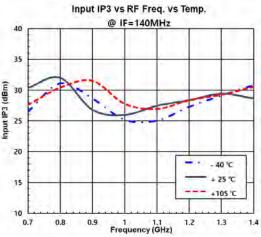



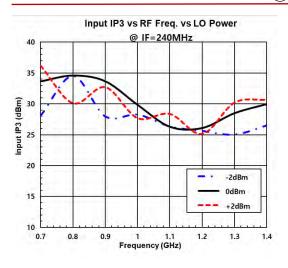



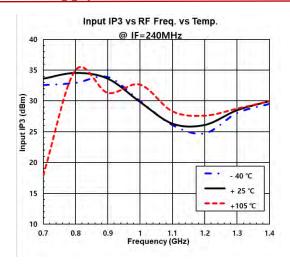



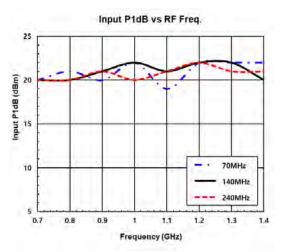



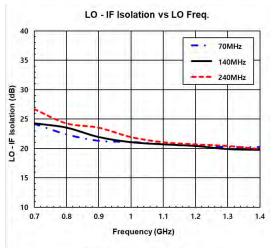


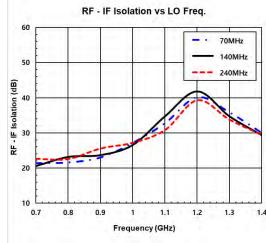


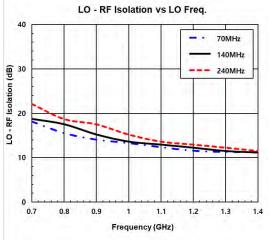



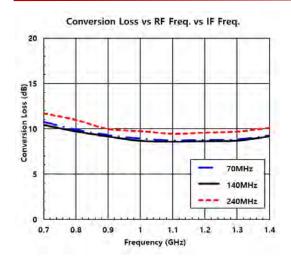



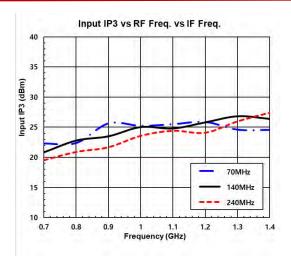





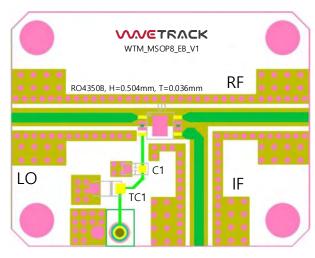



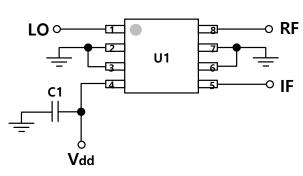




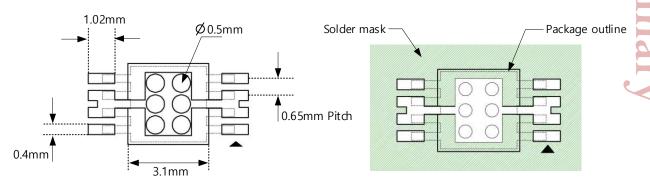








### PCB layout and Reference design



Eval. PCB layout (Rogers RO4350B, H=0.504mm, T=1/2 oz)



Reference Design



**Mounting Configuration** 

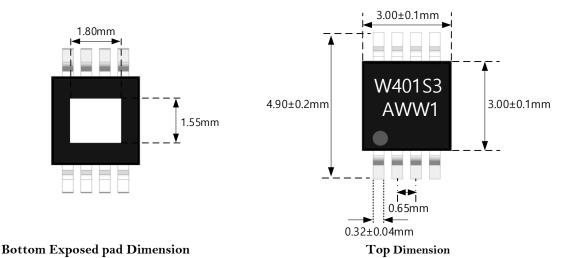
### Bill of Material

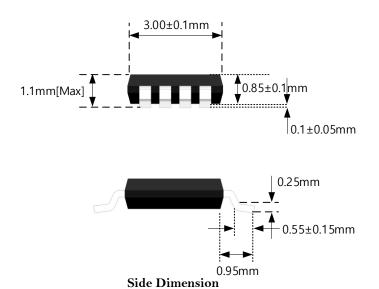
| Reference | Value    | Description             | Manufacture |
|-----------|----------|-------------------------|-------------|
| U1        | WTM401   | RF Mixer MMIC           | WAVETRACK   |
| C1        | 100 [pF] | Cap. Chip 0402, 5%, 10V | Samsung     |
| TC1       | 10[uF]   | Tantalum Capacitor      | Samsung     |





### Package Dimension & Marking


• Marking : Manufacture


Part Number - W401S3

Lot code – AWW1

A = Year / WW = Working Week / 1 = Wafer No.

• Dimension : Millimeters



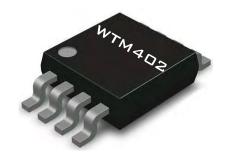






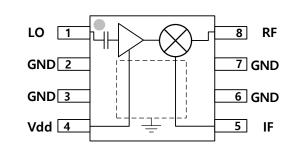
### **General Description**

The WTM402 is a high linearity and dynamic range passive mixer with an integrated LO driver amplifier in an ultra-small lead-free/green/RoHS-compliant MSOP-8 package. The Mixer MMIC is able to operate across from 1700MHz to 2700MHz frequency range to achieve +29.7dBm Input IP3 while drawing a very low 35mA on 5V and 23mA on 3.3V.

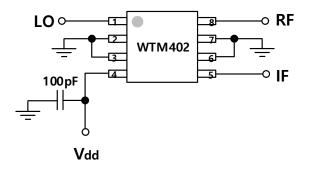

The WTM402 is designed a full-matched 50ohm MMIC mixer using high reliability GaAs FET process.

### **Features**

- +29.7dBm Input IP3
- 9.6 dB Conversion Loss
- RF range: 1700~2700 MHz
- LO range: 1560~2840 MHz
- IF range: 50~300 MHz
- 35mA @+5V Supply/23mA @ +3.3V Supply
- 0 dBm LO drive level
- No External choke inductor


### **Applications**

- Cellular / PCS / 3G / LTE repeaters
- Wireless Data / WLAN
- CATV & Cable Modem
- ISM band application
- Microwave Radio




MSOP-8 Exposed Pad Package

### **Functional Block Diagram**



### **Typical Application Configuration**



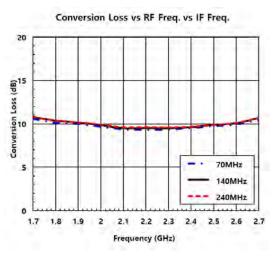


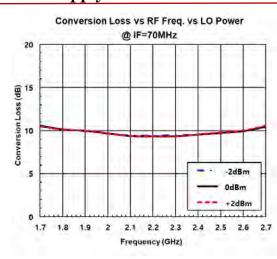


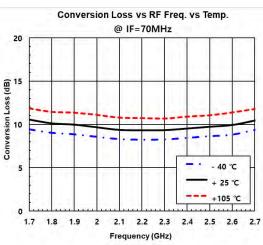
### **Absolute Maximum Ratings**

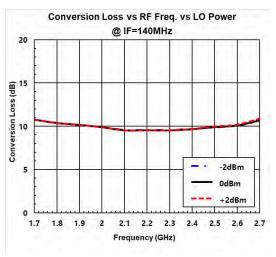
| Parameter                              | Rating        |
|----------------------------------------|---------------|
| Supply $Voltage(V_D)$                  | 6.0 V         |
| Max Device Current(I <sub>D</sub> )    | 60 mA         |
| Max IF/RF Input Power                  | 25 dBm        |
| Max LO Drive Input Power               | 10 dBm        |
| Operating Temperature(T <sub>L</sub> ) | -40 to +105°C |
| Storage Temperature                    | -65 to +150°C |
| ESD Sensitivity(HMB)                   | Class 1B      |
| Moisture Sensitivity Level             | MSL2          |

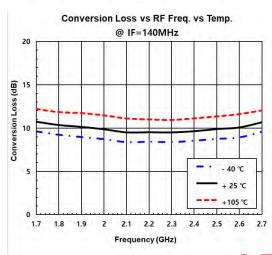


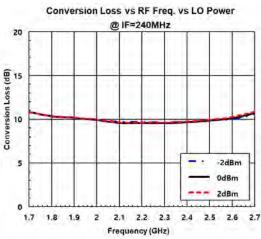

### **Typical Performance**


| Parameter             |               | 3.3V          |               |               | 5.0V          |               | Units |
|-----------------------|---------------|---------------|---------------|---------------|---------------|---------------|-------|
| Frequency range<br>RF | 1.8           | 2.1           | 2.6           | 1.8           | 2.1           | 2.6           | GHz   |
| Frequency range<br>LO | 1.56<br>~1.94 | 1.86~<br>2.24 | 2.36~<br>2.74 | 1.56<br>~1.94 | 1.86~<br>2.24 | 2.36~<br>2.74 | GHz   |
| Frequency range IF    |               | 50 ~ 300      |               |               | 50 ~ 300      |               | MHz   |
| Conversion Loss       | 10.1          | 9.2           | 9.9           | 10.6          | 9.4           | 10.0          | dB    |
| LO to RF Isolation    | 11.0          | 8.8           | 8.7           | 7.9           | 5.7           | 6.6           | dB    |
| LO to IF Isolation    | 16.6          | 22.6          | 31.3          | 13.4          | 19.2          | 30.1          | dB    |
| RF to IF Isolation    | 14.2          | 21.7          | 23.7          | 14.0          | 21.1          | 23.4          | dB    |
| Input IP3             | 29.3          | 29.7          | 29.1          | 34.6          | 28.3          | 28.0          | dBm   |
| Input P1dB            | 21            | 22            | 19            | 19            | 20            | 21            | dBm   |
| Supply current        | 21.2          | 23.5          | 27.5          | 32.5          | 35.3          | 43.7          | mA    |

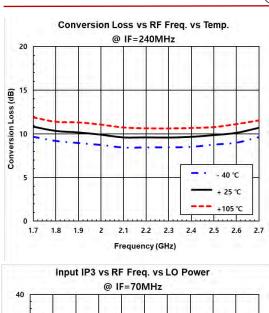

Input IP<sub>3</sub> Test Condition: Tone Spacing=1MHz, RF Input power = 0 dBm/tone, LO driver = 0dBm, T<sub>L</sub>=25°C, Z<sub>S</sub>=Z<sub>L</sub>=50, IF Freq.=70MHz, Converting with low-side LO Freq.

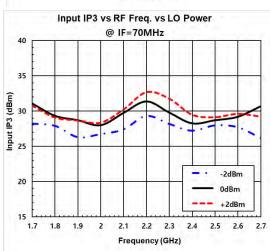


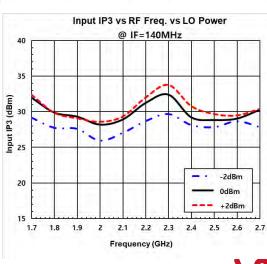



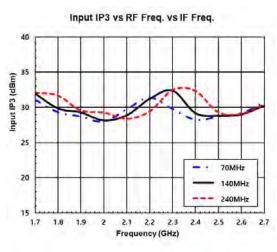



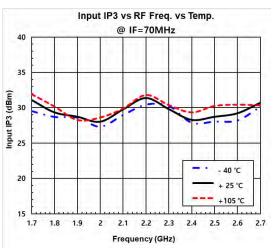


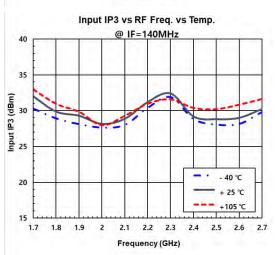



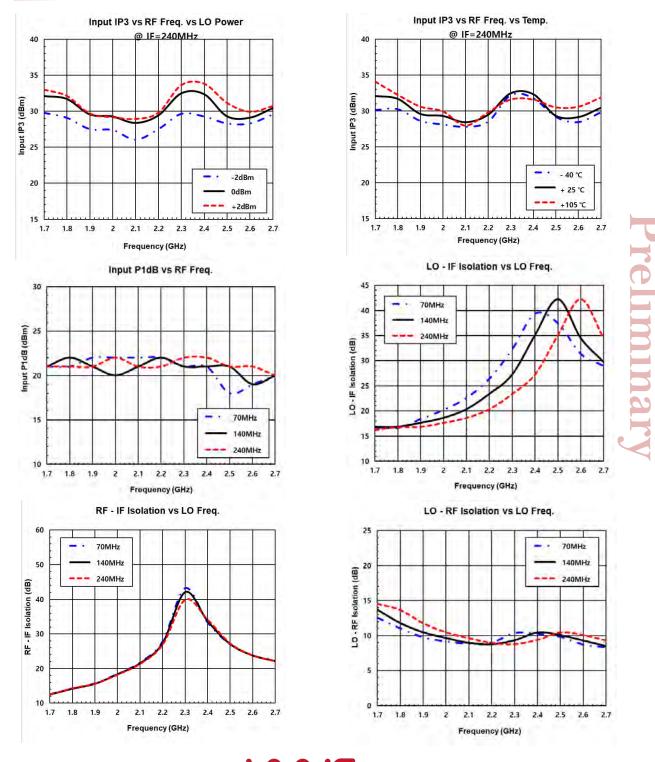



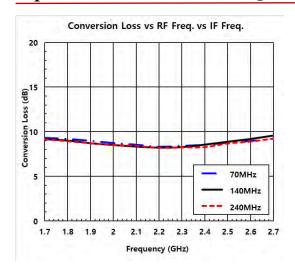



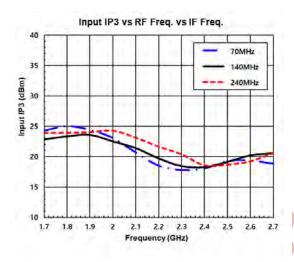




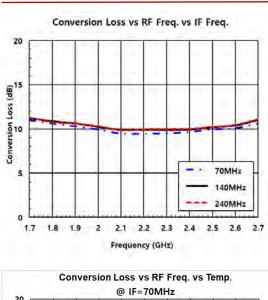


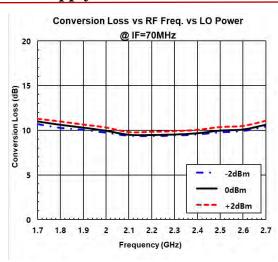



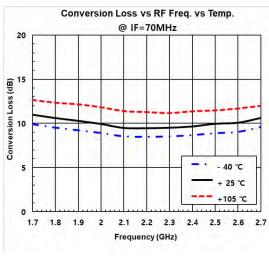



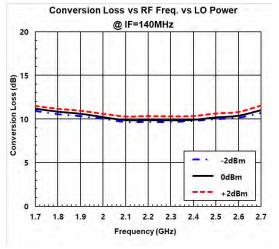


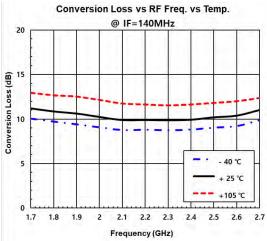


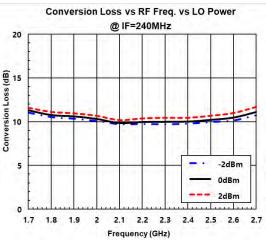



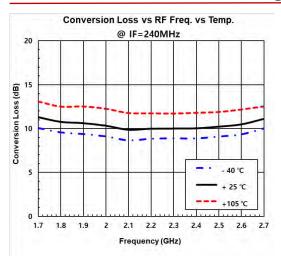



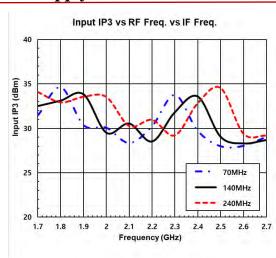



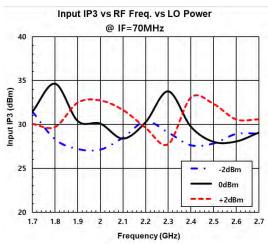



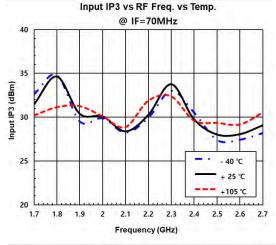



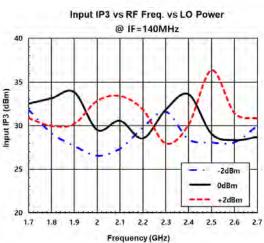


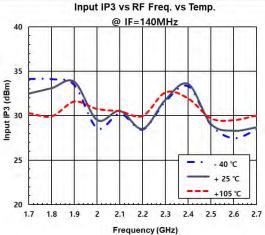



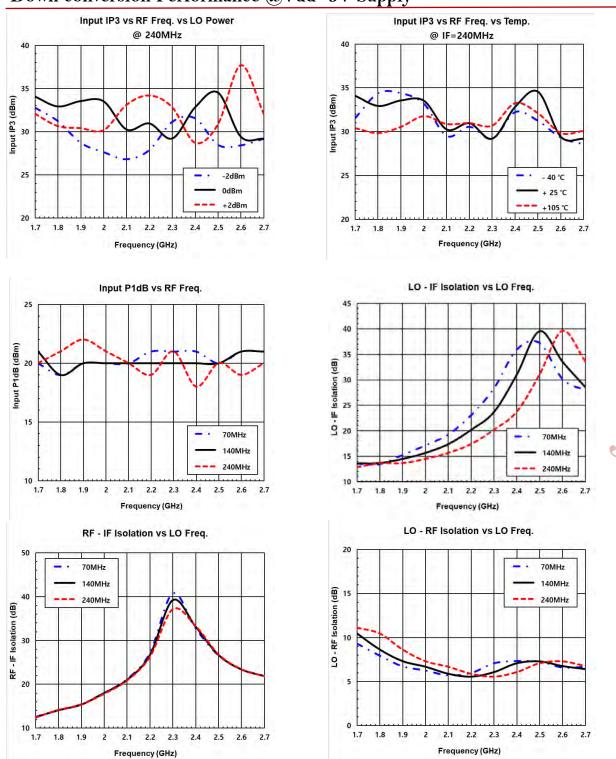



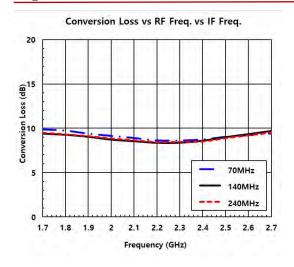



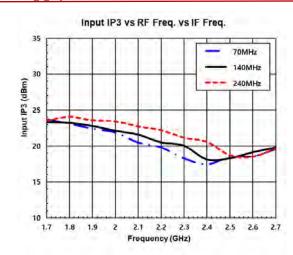






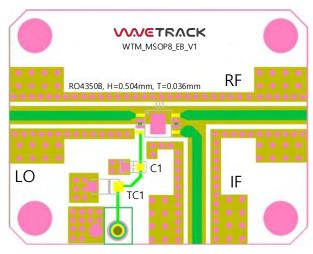



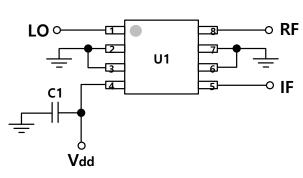




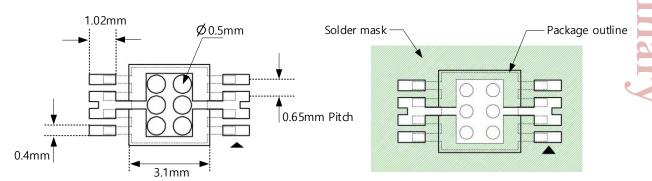








### PCB layout and Reference design



Eval. PCB layout (Rogers RO4350B, H=0.504mm, T=1/2 oz)



Reference Design



**Mounting Configuration** 

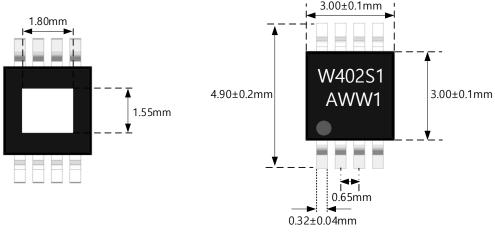
### Bill of Material

| Reference | Value    | Description             | Manufacture |
|-----------|----------|-------------------------|-------------|
| U1        | WTM401   | RF Mixer MMIC           | WAVETRACK   |
| C1        | 100 [pF] | Cap. Chip 0402, 5%, 10V | Samsung     |
| TC1       | 10[uF]   | Tantalum Capacitor      | Samsung     |



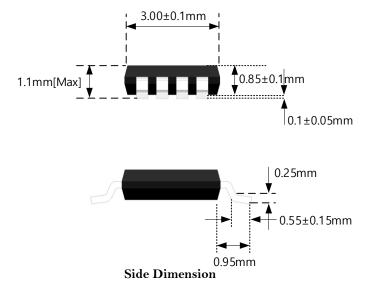


### Package Dimension & Marking


• Marking : Manufacture

Part Number - W402S1

Lot code – AWW1


A = Year / WW = Working Week / 1 = Wafer No.

• Dimension : Millimeters



**Bottom Exposed pad Dimension** 

**Top Dimension** 



